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Lee waves generated by stratified flow over rough bottom topography in the ocean extract6
momentum and energy from the geostrophic flow, causing drag and enhancing turbulence7
and mixing in the interior ocean when they break. Inviscid linear theory is generally used to8
predict the generation rate of lee waves, but the location and mechanism of wave breaking9
leading to eventual dissipation of energy and irreversible mixing are poorly constrained.10
In this study, a linear model with viscosity, diffusivity, and an upper boundary is used to11
demonstrate the potential importance of the surface in reflecting lee wave energy back into12
the interior, making the case for treating lee waves as a full water column process. In the13
absence of critical levels, it is shown that lee waves can be expected to interact with the14
upper ocean, resulting in enhanced vertical velocities and dissipation and mixing near the15
surface. The impact of the typical oceanic conditions of increasing background velocity and16
stratification with height above bottom are investigated and shown to contribute to enhanced17
upper ocean vertical velocities and mixing.18

1. Introduction19

Oceanic lee waves are quasi-steady internal gravity waves generated by the interaction20
of geostrophic flows with submarine topography. They are present throughout the world’s21
oceans, accounting for an estimated 0.2 - 0.75 TW of conversion from the geostrophic flow22
(Scott et al. 2011; Nikurashin & Ferrari 2011;Wright et al. 2014). Approximately half of this23
generation takes place in the Southern Ocean (SO) (Nikurashin & Ferrari 2011), where lee24
waves have been shown to be an important sink of energy and momentum from the energetic25
mesoscale eddies of the Antarctic Circumpolar Current (ACC) due to the rough topography26
and high bottom velocities in the region (Nikurashin & Ferrari 2010b; Nikurashin et al.27
2012; Naveira Garabato et al. 2013; Yang et al. 2018).28
Lee waves play an important role not only in the momentum budget of the mean flow29

through lee wave drag, but also in the buoyancy and tracer budgets through diapycnal30
mixing. Enhanced levels of turbulence above topography associated with lee waves and31
other topographic interaction processes are an important source of diapycnal mixing in the32
deep ocean, contributing to the closure of the meridional overturning circulation (MOC)33
(MacKinnon et al. 2017; Cessi 2019; Cimoli et al. 2021). The Southern Ocean upwelling of34
tracers such as CO2 and nutrients for primary production are also sensitive to mixing in the35

† Email address for correspondence: l.baker18@imperial.ac.uk

Abstract must not spill onto p.2



2

ocean, with important consequences for air-sea fluxes and ultimately climate (Talley et al.36
2016).37

Lee wave horizontal lengthscales are typically of order 500 m - 10 km in the ocean, a range38
that is unresolved in global climate models, so the mixing and drag effects of lee waves39
both need to be parametrised. The generation of lee waves is usually understood using linear40
theory, whereby the lee wave perturbations are assumed to have a much smaller amplitude41
than the mean flow itself (Bell 1975). An important parameter determining the linearity of lee42
waves generated at topography of characteristic height h in uniform background stratification43
N and flow speed U is the lee wave Froude number FrL = Nh/U (Mayer & Fringer 2017).44
Lee waves can propagate vertically when their horizontal wavenumber k (set by topography)45
is such that | f | < |Uk | < |N |, where f is the Coriolis parameter. Under the assumption46
| f | � |Uk | � |N |, FrL is proportional to the ratio of the topographic height h to the lee47
wave vertical wavelength, or equivalently the ratio of the perturbation horizontal velocity to48
the background velocity, thus the linear approximation is formally valid for FrL � 1. Energy49
flux calculated using the linear approximation has been shown to agree with two-dimensional50
(2D) nonlinear simulations for FrL . O(1) (Nikurashin et al. 2014).51

For 2D topography and flow conditions such that FrL is greater than some critical Froude52
number FrcritL ∼ O(1), topographic blocking occurs since the flow lacks the kinetic energy53
to raise itself over a bump of height greater than ∼ U/N (Smith 1989). Thus, the effective54
height of topography heff is always reduced such that the waves are generated with FreffL =55

Nheff/U . FrcritL (Winters & Armi 2012). When the topography is three dimensional (3D),56
splitting may also occur as the flow goes around rather than over a bump, and the effective57
height is lower still. Nikurashin et al. (2014) found that for multichromatic topography with58
h defined as the RMS (root mean square) topographic height, FrcritL ' 0.7 for 2D topography,59

and FrcritL ' 0.4 for 3D topography. Thus, with modifications for finite amplitude and 3D60
effects, the linear theory can be used with some success even when the RMS topographic61
height violates the linear approximation. Several estimates of energy conversion from the62
geostrophic flow to lee waves have been found using estimated topographic spectra, bottom63
velocities and stratification globally (Bell 1975; Scott et al. 2011; Nikurashin & Ferrari 2011;64
Wright et al. 2014). Problems remain with this approach, such as the proper representation65
of blocking in the topographic spectrum, and the neglect of the influence of flow due to large66
scale topography on the radiating lee waves, which can significantly impact the dissipation67
above topography (Klymak 2018).68

Although the generation of leewaves iswell understood in a linear sense, the ultimate fate of69
lee wave energy as a fundamentally nonlinear and dissipative process is poorly constrained.70
After generation, lee waves radiate vertically and downstream away from topography. A71
vertical structure function exponentially decreasing with height above bottom was proposed72
by St. Laurent et al. (2002) for parametrisation of the dissipation rate due to the breaking73
of internal tides, and this has been implemented in lee wave parametrisations with decay74
scales between 300 and 1000 m (Nikurashin & Ferrari 2013; Melet et al. 2014). Both of75
these studies found that water mass transformation was sensitive to the decay scale used, thus76
accurate parametrisation of the vertical structure of mixing and dissipation is necessary for77
correctly predicting the ocean state in global climate models.78

Lee waves also play an important role in causing drag on the flow, especially in the ACC79
(Naveira Garabato et al. 2013; Yang et al. 2018). When flow impinges on topography, the80
pressure differences across the topographic features cause drag, known as form drag. If there81
is topographic blocking, or the conditions for radiation of lee waves are not met, this drag82
will force the flow local to the topography. However, if lee waves are generated and propagate83
upwards this drag is distributed across the water column as a wave drag, locally forcing the84
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flow where the waves break. Thus, the vertical distribution of the decelerating force on the85
mean flow due to lee wave breaking must also be parametrised. In the linear theory, the86
energy flux at topography is equal to the product of the total lee wave drag and the bottom87
background velocity, but the vertical distributions of the forcing on the flow and the energy88
loss need not be the same.89
Possible sinks for lee wave energy include breaking due to vertical shear from inertial90

oscillations generated by parametric instability (Nikurashin & Ferrari 2010a), dissipation91
at critical levels (Booker & Bretherton 1967), breaking due to convective instability on92
generation (Peltier & Clark 1979), and re-absorption of lee wave energy in a vertically93
sheared flow that decreases away from the topography (Kunze & Lien 2019). Nikurashin &94
Ferrari (2010b) performed idealised simulations representative of lee wave generation and95
dissipation in the Southern Ocean, finding that 50% of lee wave energy dissipated in the96
bottom 1km of the ocean for FrL > 0.5 compared to 10% for FrL = 0.2. A more realistic97
simulation capturing the characteristic stratification, wind forcing, and topography of the SO98
(Nikurashin et al. 2012) found that 80% of the wind power input into geostrophic eddies was99
converted to smaller scales by topography, of which just 20% radiated into the interior ocean,100
with most dissipated in the bottom 100 m. However, this and other wave resolving models101
may use artifically high diffusivity and viscosity, preventing lee waves from radiating in a102
physical way (Shakespeare & Hogg 2017).103
The linear theory of Bell (1975) uses a freely radiating upper boundary condition (hereafter104

referred to as ‘unbounded’ theory), and can only be applied for uniform stratification105
and velocity, or by using the Wentzel-Kramers-Brillouin (WKB) approximation in some106
cases (Gill 1982; de Marez et al. 2020). This has led most idealized oceanic lee wave107
studies to assume the same and treat lee waves as a process confined to the deep ocean108
where stratification and velocity are assumed to be approximately constant with height. The109
assumption in most such studies (with some exceptions, e.g. Zheng & Nikurashin (2019)) is110
that no significant amount of lee wave energy reaches the surface, and even if it does, it does111
not matter for the structure of the wave field. In this study, we consider the treatment of lee112
waves as a full water column process, allowing reflection from the surface and interaction113
with changes in stratification and velocity with height.114
In the real, dissipative ocean, some lee wave energy will be lost immediately due to115

boundary processes, and on their passage through thewater column leewaves can be expected116
to lose energy through nonlinear processes leading to cascade of energy to smaller and117
eventually dissipative scales. Any model that tries to capture the entire water column must118
therefore include some representation of mixing and dissipation. However, the question of119
the magnitude and location of lee wave energy loss is a circular one, since it is the nonlinear120
interactions involving the wave field itself that cause wave breaking, leading to mixing and121
dissipation. Parametrisations for energy loss must therefore be used even when the lee waves122
are resolved, since capturing the lengthscales of both lee waves (∼ O(5 km)) and turbulent123
lengthscales (∼ O(1 cm)) in a 3D direct numerical simulation (DNS) remains prohibitively124
expensive. Shakespeare & Hogg (2017) investigated the impact of Laplacian parametrisation125
of mixing and dissipation in lee wave resolving models, and concluded that care must be126
taken to avoid artificially high viscosity and diffusivity that is not physically justified. They127
suggest that high levels of dissipation near the bottom boundary in wave resolving models128
could be a direct result of the high levels of viscosity and diffusivity used in the sub-gridscale129
parametrisation. Therefore, lee wave dissipation in the abyssal ocean could be commonly130
overestimated in modelling studies, preventing the radiation of lee wave energy far up into131
the water column.132
Observations of lee waves are sparse due to their unpredictable generation by the time133

varying eddy field, difficulty in taking measurements at the bottom of the ocean, and their134
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steady nature (Legg 2021). However, the available observational evidence indicates that135
linear predictions of energy flux exceed the levels of dissipation in the bottom 1 km by up136
to an order of magnitude (Brearley et al. 2013; Sheen et al. 2013; Waterman et al. 2013).137
Direct measurements of lee wave energy flux over the Shackleton fracture zone in the Drake138
Passage (Cusack et al. 2017) were found to be consistent with predicted linear generation139
modified for finite amplitude topography, but dissipation integrated over the water column140
was found to be two orders of magnitude smaller than expected, suggesting that lee waves141
find a sink for their energy outside of local mixing and dissipation.142
One possible sink is reabsorption of lee wave energy to a sheared mean flow when the flow143

is decreasing in magnitude away from topography (Kunze & Lien 2019). This is particularly144
relevant in regions of enhanced bottom velocities, and is supported by observational evidence145
that locations of overpredicted lee wave dissipation rates in the ACC are characterised by146
large near-bottom velocities (Waterman et al. 2014). Observations taken from moorings in147
the Scotia Sea also show evidence of interaction between internal waves and eddies, with148
leading order impact on both wave and eddy energy budgets (Cusack et al. 2020). Zheng &149
Nikurashin (2019) investigated another possible pathway, showing that that lee wave energy150
can be swept downstream to dissipate elsewhere. An important component to their study is151
an upper boundary, which allows lee waves at scales affected by rotation or nonhydrostatic152
effects to travel downstream by first reflecting at the upper boundary. They find that wave153
reflection enhances energy dissipation rates in the interior by up to a factor of two.154
The motivation for the current study arises from realistic regional simulations of the155

Southern Ocean that show large lee waves penetrating high into the water column and156
reflecting from the surface. Figure 1 shows vertical velocities from a recent nested simulation157
of the Drake Passage at 0.01◦ resolution, performed using the hydrostatic configuration of158
the Massachusetts Institute of Technology general circulation model (MITgcm, Marshall159
et al. 1997). For details of the model setup see Mashayek et al. (2017) - the model shown160
here has an improvement of vertical resolution from 100 to 225 vertical levels, with 10 m161
resolution at the surface and6 25 m for all depths above −4500 m, allowing better resolution162
of the energetic internal wave field. The vertical diffusivity and viscosity have background163
values of 5 × 10−5 m2 s−1, and are enhanced by the K-profile parametrisation with the critical164
Richardson number for shear instability set to Ric = 0.3 (Large et al. 1994). Biharmonic Leith165
horizontal viscosity is used with a coefficient of 2 (Leith 1996; Fox-Kemper & Menemenlis166
2008).167
Figure 1a shows a plan view of a typical daily average of vertical velocity at 200 m depth.168

Lee waves appear as disturbances in the vertical velocity with O(0.1°) ∼ O(6 km) horizontal169
wavelength. Figure 1b shows the corresponding vertical velocity on a slice, with strong lee170
wave generation at the very rough bottom topography and propagation throughout the water171
column. The vertical velocities are near zero at the surface, with vertical phase lines and a172
modal structure in the vertical indicative of superposition of the wave field due to reflection173
at the surface.174
This phenomenon has also been seen in other realistic simulations. de Marez et al. (2020)175

examined the interaction of the Gulf Stream with the Charleston Bump in high resolution176
realistic simulations, with a focus on lee wave generation. They found that the lee waves177
have a surface signature, and showed qualitative agreement with sun glitter images from178
satellite observations. The simulation output was compared with (unbounded) linear theory,179
and differences noted near the surface, where surface reflection in the simulations caused a180
modal structure in the vertical velocity.181
Rosso et al. (2015) investigated topographic influence on surface submesoscales using a182

realistic 1/80◦ resolutionmodel of the Indian sector of the Southern Ocean, and noted surface183
peaks in vertical velocity (their figure 3). Lee waves reaching the surface were identified in184
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Figure 1: A daily average of vertical velocity (m s−1) in a realistic simulation of the Drake
Passage showing a strong lee wave field throughout the water column (details in main text).
(a) A plan view at 200 m, and (b) a vertical slice through the dashed line in (a).

the simulations and noted as a potential source for these increased vertical velocities, but not185
investigated further as the focus was on vertical velocities caused by surface submesoscales.186
They reasoned that enhanced near surface vertical velocities in their figure 4d are unlikely to187
be generated by a lee wave evident at depth, both because the near surface vertical velocities188
have a vertical phase line, indicating that it is decoupled from the tilted lee wave phase lines189
below, and the RMS vertical velocity has a near surface maximum. However, we will show190
that vertical phase lines near the surface and a subsurface maximum in RMS vertical velocity191
are expected properties of lee waves that interact with the surface.192
Bachman et al. (2017) simulated a similar region of the Drake Passage to that shown193

in figure 1a to investigate the surface submesoscale field and vertical velocities. They194
found regions of surface intensified RMS vertical velocity, and suggested that submesoscale195
circulations may not account for all such vertical velocities, with lee waves a potential source.196
In any case, the separation of surface submesoscales and lee waves is not clear due to their197
similar horizontal scales, and it is possible that they interact as a result.198
Although there is evidence for near-surface lee wave structures in the above modelling199

studies, observational evidence is more scarce. In the Gulf Stream, synthetic aperture radar200
(SAR) and sun glitter images from satellites have been used to diagnose the presence of lee201
waves downstream of seamounts (Zheng et al. 2012; de Marez et al. 2020), and strongly202
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suggest interaction between bottom generated internal waves and the surface. In one of the203
few in-situ observations of lee waves, Cusack et al. (2017) found evidence of enhanced204
vertical velocities throughout the water column all the way to the top 500 m of the ocean205
above a ridge of 2500 m depth in the Drake Passage, suggesting interaction between the large206
wave generated at the ridge and the surface. However, the authors aren’t aware of any direct207
observational evidence in the Southern Ocean for interaction between the bottom generated208
internal wave field and the surface.209
A rigid lid upper boundary condition for the lee wave problem has been considered in the210

past, and the resonant properties of the solutions investigated (Bretherton 1969; McIntyre211
1972; Baines 1995). Dossmann et al. (2020) recently performed experiments to quantify the212
generation of topographic waves from a background flow with both steady and oscillatory213
components, developing a corresponding linear theory including both a rigid lid upper214
boundary and a Rayleigh friction to allow weakly viscous effects. Although coupling of215
the wave generation from quasi-steady flows and tides is the focus of their study, the linear216
theory is similar to our study of the steady component. Here, we also consider non-uniform217
background flows.218
The radiation of lee waves under a changing background flow has been extensively studied219

in the atmospheric context, with a focus on parametrising wave drag due to isolated obstacles220
(mountains) in atmospheric models (Teixeira 2014, and references therein). Particularly221
relevant are studies of trapped lee waves, whereby sharp changes in background flow with222
height allow partial wave reflection and resonance (Scorer 1949; Gill 1982; Teixeira et al.223
2005, 2013), leading to high and low drag states, with clear parallels with the resonances224
found due to the upper boundary in the current study. In particular, Bretherton (1969)225
performed a comprehensive linear study including a rigid lid boundary condition similar to226
ours. However, a rigid lid condition in the atmosphere is not realistic, so efforts were generally227
made to improve the treatment of the upper boundary and reduce its impact (Teixeira 2014).228
This study is intended to demonstrate simple properties of oceanic lee waves under changing229
background conditions typical of the ocean, with a particular focus on their structure in the230
upper ocean due to the boundary condition at the surface. Typically, atmospheric lee wave231
studies focus on drag. In the oceanic context, both lee wave drag and mixing are important,232
thus our focus is also somewhat different to the aforementioned atmospheric studies.233
The structure of this paper is as follows. In §2, we review and derive the linear lee wave234

theory with viscous and diffusive terms and discuss boundary conditions, energetics, time235
dependence, WKB solutions, and complications associated with the bounded solution and236
non-uniform background fields including resonance and critical levels. In §3, we present the237
numerical solver in a bounded and unbounded domain and describe the modelling set-up.238
We present results from the linear solver in §4, and discuss conclusions in §5.239

2. Theoretical Framework240

Following Bell (1975), we start from the rotating, incompressible, Boussinesq equations with241
the inclusion of Laplacian viscosity A and diffusivity D:242

u†t + u† · ∇u† + f × u† = −ρ−1
0 ∇p† + b†ẑ +A∇2u† , (2.1)243

b†t + u† · ∇b† = D∇2b† , (2.2)244

∇ · u† = 0 , (2.3)245246

where u† = (u†, v†,w†) is the velocity, f = (0, 0, f ) is the Coriolis parameter, p† is the247
pressure (with the linear hydrostatic pressure −ρ0g(z − H) due to the constant reference248
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density ρ0 removed), b† = −(ρ† − ρ0)g/ρ0 is the buoyancy, ρ† is the density, and † is used249
to denote total (background plus wave) fields.250

2.1. Base state251

We specify that the background velocity is in the x-direction, and both background velocity252
and stratification are steady and vary only in the vertical. The background velocity is given253

by (U(z), 0, 0), pressure by p(y, z), and buoyancy by b(y, z), with the bar notation indicating a254
background field. Assuming that the impact of perturbations on the mean flow is not leading255
order, from (2.1) it must satisfy both geostrophic and hydrostatic balance:256

− f U = −ρ−1
0 py , (2.4)257

0 = −ρ−1
0 pz + b . (2.5)258259

Eliminating p from (2.4) - (2.5) gives the thermal wind balance:260

− f Uz = by . (2.6)261

Requiring that the stratification N2 = bz is a function of z only, (2.6) gives that f Uzz = 0.262
We therefore only consider base states such that f Uzz = 0, but continue the derivation for263

general U(z) for use when f = 0. This ensures that although p and b are functions of y,264

py and by are not, and the problem remains effectively 2D so that all coefficients of the265
linearised problem to be derived in §2.3 are independent of y.266

2.2. Energy loss267

A representation of lee wave energy loss is crucial to understanding the structure of the lee268
wave field in the vertical. Lee wave energy must either be reabsorbed by the mean flow,269
or lost to dissipation and mixing. The latter is a result of energy transfer to smaller scales270
through instabilities of the waves themselves, or through nonlinear interactions with other271
waves and the background flow. In our idealised linear model, we cannot properly represent272
either the dynamics of the waves which can lead to instabilities and breaking, or small scales273
from other sources of turbulence that act to eventually dissipate even linear waves. The effect274
of this energy lost from the lee wave field must therefore be parametrised.275
Parametrisation of dissipation and mixing at the sub-gridscale in models is generally im-276

plemented through Laplacian (or higher order) viscous and diffusive terms in the momentum277
and buoyancy equations - as shown in (2.1) - (2.2). Shakespeare & Hogg (2017) provide a278
comprehensive overview of the role of Laplacian viscosity and diffusivity in the linear lee279
wave problem, with a focus on preventing excessive dissipation in wave resolving models.280
Here, we do not represent the processes that drain energy from the lee wave field, so aim281
to model them diffusively with this parametrisation. However, unlike Shakespeare & Hogg282
(2017), we are dealing with background flows that vary in the vertical, and thus including283

the vertical components Avu†zz and Dvb†zz of the Laplacian terms in our study significantly284
complicates the solution.285
For mathematical convenience, we therefore represent the total viscous and diffusive286

terms by the horizontal components only. This allows some scale selection for energy loss287
(improving on, say, a simple Rayleigh friction), without overly complicating the problem.288
Using only the horizontal component as a proxy for the total dissipation and mixing289
has certain drawbacks, including invalidating any solutions where the vertical wavelength290
changes drastically or becomes very small, e.g. at critical levels. It is important to keep in291
mind the simplifications made here when analysing the model mixing and dissipation in292
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§4. Direct comparisons between our horizontal turbulent viscosity Ah and diffusivity Dh293
parameters and other studies or models should also be made with care, since they represent294
both horizontal and vertical viscosity and diffusivity. Furthermore, sinceAh andDh represent295
both background turbulent processes and breaking of the lee wave field itself, their ‘real’296
values should depend on nonlinearity of the wave field and properties of the background297
flow, among other things. Although the simplifications made with this parametrisation are298
likely to modify our solutions somewhat, we believe that the key results of this study are299
unaffected.300

2.3. Linearisation301

For FrL � 1, we consider small perturbations to the base state described in §2.1.We consider302
a quasi-2D flow such that the topography and waves are uniform in y. This choice is sufficient303
to demonstrate our main findings and greatly simplifies the problem, although the theory304
can be extended to 2D topography without significant difficulties. The coefficients of the305
linearised equations are independent of y due to the constraints on the base state described306
in §2.1, thus the perturbation variables can be taken to be independent of y. We also assume307
here that the perturbations are steady, although this need not be imposed at this point and308
follows from the application of the steady boundary conditions to be described in §2.4.309

Letting u† = (U(z) + u(x, z), v(x, z),w(x, z)), b† = b(y, z) + b(x, z), p† = p(y, z) + p(x, z)310
and linearising (2.1) - (2.3) gives:311

wUz +Uux − f v = −ρ−1
0 px +Ahuxx , (2.7)312

Uvx + f u = Ahvxx , (2.8)313

αUwx = −ρ
−1
0 pz + b + αAhwxx , (2.9)314

Ubx − f vUz + wN2 = Dhbxx , (2.10)315

ux + wz = 0 , (2.11)316317

where α ∈ {0, 1}, so that when α = 0 the equations are hydrostatic. The hydrostatic318
assumption is made when the ratio of vertical to horizontal scales is small, as is often319
the case for lee waves. We introduce a perturbation streamfunction ψ such that u = −ψz ,320
w = ψx , with Fourier transform ψ̂(k, z) defined such that:321

ψ(x, z) =
1

2π

∫ ∞

−∞

ψ̂(k, z)eikxdk . (2.12)322

Taking the Fourier transform in x of (2.7) - (2.11) and solving for the transformed323
streamfunction ψ̂(k, z) gives a second order ordinary differential equation:324

ψ̂zz + P(k, z)ψ̂z +Q(k, z)ψ̂ = 0 , (2.13)325

where326

P(k, z) =
f 2Uz (2U − ik(Ah +Dh))(

k2(U − ikAh)
2 − f 2) (U − ikAh) (U − ikDh)

, (2.14)327

Q(k, z) =
k2 (U − ikAh)

(
N2 − αk2(U − ikAh)(U − ikDh)

)
(U − ikDh)

(
k2(U − ikAh)

2 − f 2) −
k2Uzz(U − ikAh)

k2(U − ikAh)
2 − f 2 .

(2.15)

328

329

With constant background velocity and stratification and in the absence of viscosity and330
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diffusivity, this reduces to the familiar equation for the steady lee wave problem (Bell 1975):331

ψ̂zz(k, z) + k2 N2 − αU2k2

U2k2 − f 2 ψ̂(k, z) = 0 , (2.16)332

with solution:333

ψ̂(k, z) = A(k)eim(k)z + B(k)e−im(k)z , (2.17)334

for some functions A and B to be specified by the boundary conditions, where335

m2(k) = k2 N2 − αU2k2

U2k2 − f 2 . (2.18)336

It is clear from (2.17) and (2.18) that there are radiating solutions (lee waves) only when m337
is real, that is when the topographic wavelength k satisfies338

| f | < |Uk | < |N | . (2.19)339

For wavenumbers k in this radiating range, rotation can be neglected when | f | � |Uk |, and340
the hydrostatic assumption (α = 0) can be made when |Uk | � |N |, since in this case the341
vertical wavenumber m ∼ N

U (from (2.18)), so |Uk |/|N | represents the ratio of vertical to342
horizontal wavelengths.343

2.4. Boundary conditions344

2.4.1. Bottom boundary condition345

For a given k, (2.13) requires two boundary conditions. A free slip condition to ensure that346
the flow is parallel to the 2D topography h(x) is given by:347

w†(x, h) = u†(x, h)hx . (2.20)348

Linearising about the base state then gives:349

w(x, 0) = U(0)hx , (2.21)350

or equivalently, defining the Fourier transform of the topography ĥ(k) similarly to (2.12):351

ψ̂(k, 0) = U(0)ĥ(k) . (2.22)352

Given this requirement, we write ψ̂(k, z) = U(0)ĥ(k)ζ̂(k, z), where ζ̂(k, z) is the normalised353
vertical structure function for a wavenumber k, so that354

ψ(x, z) =
U(0)
2π

∫ ∞

−∞

ζ̂(k, z)ĥ(k)eikxdk , (2.23)355

and ζ̂(k, z) satisfies356

ζ̂zz + P(k, z)ζ̂z +Q(k, z)ζ̂ = 0 , (2.24)357

ζ̂(k, 0) = 1 . (2.25)358359

2.4.2. Upper boundary condition360

For the second condition, first consider the classical unbounded lee wave problem, which361
requires that waves propagate freely through the upper boundary. When the background flow362

is uniform in z, P vanishes, Q is constant in z, and a vertical wavenumber m(k) = ±
√

Q(k)363
can be found. If the flow is also inviscid, m(k) is given up to a sign by (2.18), and for the364
wavelike solutions with k in the radiating range (2.19), there is then a well defined vertical365
group velocity (to be discussed further in §2.5). The vertical group velocity must be positive366
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when the solutions are wavelike so that energy radiates away from topography, and this is367
ensured by choosing m(k) to have the same sign as Uk. When m is imaginary (non-wavelike368
solutions), physical intuition necessitates that the positive root is taken so that disturbances369
decay away from topography rather than increase exponentially (see (2.17)).370
If viscosity and diffusivity are non-zero, there is still a well defined complex vertical371

wavenumber m(k) = ±
√

Q(k). However, since m is now complex, the correct choice for372
the sign of m must always be that with positive imaginary part so that the solution decays373
away from the topography. Note that the previously non-radiating wavenumbers gain a small374
radiating component, although this is insignificant in the realistic limit of weak viscosity and375
diffusivity - see Shakespeare & Hogg (2017) for a detailed discussion. Here, we consider376
radiating lee waves from topography such that | f | < |U(0)k | < |N(0)|.377
When the coefficients P andQ are not constant in z, this radiating upper boundary condition378

is in general poorly defined, since for each k there is not a well defined vertical wavelength379
and group velocity. Waves can internally reflect and refract from changes in background380
density or velocity, so the solution cannot be restricted to upward propagating components.381
However, in some cases WKB solutions can be found for slowly varying background flows -382
see §2.11.383
If lee waves reach the upper ocean, the radiating upper boundary condition is inappropriate,384

and the air-sea interface may instead be better represented by a free surface boundary385
condition. A simpler condition is the rigid lid - we will show that for this problem, these are386
essentially equivalent.387
At a free surface given by z = H + η(x), where η � H, the linearised kinematic boundary388

condition (c.f. (2.21)) is:389

ψ(x,H) = U(H)η(x) . (2.26)390

A further boundary condition is required to close the problem and is given by the dynamic391
condition that the pressure at the surface is equal to the atmospheric pressure pA (assumed392
constant). The full pressure at the surface is p†(x, z) = p(z) + p(x, z), plus the linear term393
−ρ0g(z − H) that was removed in the definition of p† (see (2.1)). Expanding p†(x,H + η(x))394
to first order in the perturbation variables and η, and using p(H) = pA, gives:395

p†(x,H + η(x)) ' p†(x,H) + η(x)
∂p†

∂z

����
z=H

, (2.27)396

' pA + p(x,H) + η(x)
∂p
∂z

����
z=H

. (2.28)397
398

Invoking the boundary condition then gives:399

pA = pA + p(x,H) + η(x)
∂p
∂z

����
z=H

− ρ0gη(x) (2.29)400

Using hydrostatic balance of the base state (2.5) then gives the dynamic boundary condition:401

p(x,H) = ρ0(g − b(H))η(x) = ρ(H)gη(x) = ρ0gη(x) , (2.30)402

where the reference density ρ0 is taken to be the base state surface density.403
Eliminating the unknown η from the surface boundary conditions (2.26) and (2.30) gives404

the boundary condition:405

ψ(x,H) =
U(H)p(x,H)

ρ0g
. (2.31)406

This surface boundary condition could be used with the bottom boundary condition (2.21)407
to solve (2.7) - (2.11) , then the surface height recovered from (2.30) or (2.26). However, in408

Rapids articles must not exceed this page length
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practise this is unnecessary, as (2.31) can be well approximated by the rigid lid condition409
ψ(x,H) = 0, equivalent to imposing η(x) = 0 (and thereby not satisfying the dynamic410
boundary condition). To see why, first notice from (2.7) that for negligible rotation, shear,411
and viscosity, p ∼ −ρ0Uu ∼ ρ0Uψz . For slowly varying background conditions, we expect412
ψ(x, z) to locally have a sinusoidal structure in the vertical, so let (for fixed x):413

ψ(z) ∼ A sin(mz + θ) , (2.32)414

ψz(z) ∼ Am cos(mz + θ) , (2.33)415416

for some amplitude A, wavenumber m, and phase θ. Then, using the boundary relation (2.31):417

sin(mH + θ) ∼
mU2

g
cos(mH + θ) . (2.34)418

Assuming that m ∼ N/U (the hydrostatic, non-rotating limit of (2.18)):419

tan(mH + θ) ∼
NU
g
� 1 , (2.35)420

even for large upper ocean values ofU and N , and this scaling still holds for realistic conditions421
with rotation and nonhydrostatic waves. Therefore, the phase θ is such that ψ(H) ' 0, and422
it is clear that a rigid lid approximation is sufficient for determining the interior structure of423
the lee waves. The full free surface boundary condition could be implemented to determine424
exactly the (linear) surface height η(x), but hereafter we only consider the rigid lid boundary425
condition. Since the interior flow is relatively unaffected by this approximation, we could426
still estimate the surface height without explicitly solving for it, using (2.30):427

η(x) ∼
p(x,H)
ρ0g

, (2.36)428

where p(x,H) is found from the rigid lid solution.429
With the rigid lid condition ψ(x,H) = 0, the solution to the bounded problem is then given430

by (2.24) - (2.25), with the upper boundary condition:431

ζ̂(k,H) = 0 . (2.37)432

2.5. Group velocities433

The behaviour of lee waves in a bounded domain depends strongly on the direction of their434
group velocity. Consider the inviscid and unbounded problem with uniform background435
stratification and velocity, so that the vertical wavenumber m is independent of z. Re-deriving436
the governing equation (2.16) with time dependence by considering plane wave solutions437
∼ ei(kx+mz−ωt) gives the dispersion relation (c.f. (2.18)):438

(ω −Uk)2 =
N2k2 + f 2m2

αk2 + m2 , (2.38)439

whereω = 0 for steady leewaves satisfying the boundary condition (2.21). The phase velocity440
is zero as a result, but the group velocity is non zero and can be found by differentiating441
(2.38):442

cg =

(
∂ω

∂k
,
∂ω

∂m

)
, (2.39)443

=

(
f 2(N2 − αU2k2) + αU2k2(U2k2 − f 2)

Uk2(N2 − α f 2)
,
(U2k2 − f 2)

3
2 (N2 − αU2k2)

1
2

Uk2(N2 − α f 2)

)
, (2.40)444

445
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Figure 2: a) Diagram showing monochromatic topography with indicative ray paths for
several values of the overlap parameter γ, demonstrating some possible idealised paths
of lee waves with different directions of group velocity. b) Diagram showing the vertical
structure function ζ̂(k, z) for the analytic solution (2.42), for some vertical wavenumbers m
such that the solution is near-resonant (blue) and at its minimum amplitude (magenta).

where the sign of the vertical group velocity is taken to be positive when m is real, as is446
appropriate for the unbounded case, and it is assumed that | f | < |Uk | < |N | so that the waves447
are radiating. It is clear from (2.40) that in the non-rotating and hydrostatic case ( f = α = 0),448
the horizontal component of group velocity is zero, and waves propagate vertically upwards.449
Supposing now that they encounter the surface, the waves will reflect and propagate directly450
downwards - still with zero horizontal group velocity and now with negative vertical group451
velocity - superimposing exactly on the upward propagating wave field. This scenario is452
illustrated for monochromatic topography in figure 2a (blue lines). The reflected waves can453
then be expected to directly increase or decrease the topographic wave drag and energy454
conversion by constructive or destructive interference with the upwards propagating wave455
field at the topography. The extent to which this occurs is determined by the energy lost to456
mixing and dissipation during propagation, to be discussed in §4.1. When the horizontal457
group velocity is zero, no energy propagates downstream, so without dissipative energy loss458
there can be no energy conversion into lee waves at the topography and also no wave drag459
(see §2.8). However, there may be resonance (to be discussed in §2.7).460
If |Uk | is of comparable magnitude to the Coriolis or buoyancy frequency, the waves will461

have a positive horizontal component of group velocity and will propagate both upwards462
and downstream, reflecting at the surface downstream of the topography. Without dissipation463
and mixing this could continue indefinitely and allow the lee wave energy to propagate far464
downstream, although in reality it seems unlikely that a significant amount of wave energy465
would undergo multiple reflections due to nonlinear interactions near the bottom boundary.466
For flow moving over the top ∼ U/N of an isolated topographic peak and generating a467
continuous range of wavenumbers k, if the angle of propagation (the angle of the group468
velocity vector to the vertical) is large enough for all radiating components, the reflected469
wave will not significantly interact with the generation process and the wave drag will be470
unchanged from the unbounded case. If the bump is not isolated, the reflected wave could be471
incident on the generation of a lee wave at a different topographic feature, and the drag (and472
energy flux) modification would be more complex.473
To determine the likelihood of a lee wave superimposing on itself at the topography, we474

can determine the angle of propagation using (2.40), assuming for simplicity that U and N475
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Figure 3: Overlap parameter γ defined in (2.41) for the nonhydrostatic case and (a) fixed
U = 0.1 m s−1, varying f and (b) fixed f = −1 × 10−4 s−1, varying U, with H = 3 km,
N = 1 × 10−3 s−1. The black dashed line shows γ = 1, below which a reflected lee wave
could be expected to modify its own generation mechanism.

are constant and viscosity and diffusivity are negligible. An ‘overlap parameter’ γ(k) can be476
defined as:477

γ(k) =
���� kH
π

���� tan θ , tan θ =
∂ω

∂k

/
∂ω

∂m
, (2.41)478

where θ is the angle of wave propagation to the vertical, and for each k, γ is the horizontal479
distance travelled by a wave whilst propagating to the surface at z = H and back to the480
topography at z = 0, normalised by the horizontal wavelength. This is illustrated for γ =481
0, 0.5, and 1 in figure 2a. Figure 3 shows the variation in γ with horizontal wavelength 2π/k482
for various U and f . Each curve tends to infinity (not shown) at k = |N/U | and k = | f /U |,483
at which point the vertical group velocity reaches zero and the solutions become evanescent.484
The increase in γ for both large and small horizontal wavelengths is due to the increasing485
downstream component of group velocity.486
For smaller values of f (black dashed and orange lines in figure 3a) and larger values of U487

(blue and magenta lines in figure 3b), there exists a range of scales at which γ . 1, indicating488
that reflected lee waves could impact on the generation mechanism by direct superposition.489
For f = −1 × 10−4 s−1, characteristic of the Southern Ocean, there exist horizontal scales490
at which this may be the case for U & 0.2 m s−1. However, for f = −1 × 10−4 s−1 and491
U = 0.1 m s−1 (orange line in figure 3b), γ > 2 for all radiating wavelengths, and all reflected492
waves return to topography at least 4 km downstream of the generating topographic feature.493
Of course, this argument doesn’t cover the more likely scenario of varying velocity and494
stratification with height. We conclude that for lee waves in shallow areas, low latitudes,495
or high background flows it is possible for lee waves generated by isolated topography to496
reflect at the surface and modify the original wave drag and energy conversion, but that this497
is unlikely for deep generation, low background velocities, and high latitudes.498
When the topography is not isolated, and in particular when an artificially discrete499

topographic spectrum is used as in this study, the wave drag modification can be significant500
even when the overlap parameter is larger than one. For monochromatic topography, when501
γ(k) = n ∈ N, a wave generated at a topographic peak reflects at the surface and is incident502
on the topographic peak n wavelengths downstream from the original, as shown in figure 2a503
for n = 1, and impacts the wave field at that generation site in a similar way to the case γ = 0.504

505
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2.6. Analytic solution506

When U and N are constant with height, so that P vanishes and Q is a function of k only, the507
solution to (2.24) for ζ̂(k, z) is (extended from Baines (1995)):508

ζ̂(k, z) =
sin(m(k)(H − z))

sin(m(k)H)
, (2.42)509

where m(k) is the complex vertical wavenumber defined by m2(k) = Q(k), and the choice of510
sign does not matter. The solution can then be found numerically for general topography via511
(2.23), or analytically for monochromatic topography h(x) = h0 cos k0x to be:512

ψ(x, z) = Uh0<

(
sin(m(k0)(H − z))

sin(m(k0)H)
eik0x

)
. (2.43)513

The above solutions are valid only when |m(k)H | , nπ, n ∈ N. At such points, resonances514
of the system occur.515

2.7. Resonance516

For uniform U and N , under the assumption that lee waves are hydrostatic (|Uk | � |N |),517
rotation is unimportant (|Uk | � | f |), and the system is inviscid, the vertical wavenumber is518
simply m(k) = N/U. The resonances of (2.42) are then independent of k, and occur when519
|NH/U | = nπ for some n ∈ N. There are no steady solutions to (2.24), (2.25) and (2.37)520
in this inviscid limit. Physically, this occurs when a whole number of half-wavelengths fits521
in the vertical domain and there is constructive interference of the upwards and downwards522
propagating waves. Figure 2b shows the vertical structure function ζ̂ , defined in (2.42), for523
two real values of m. When mH = 5.05π (blue) the system is near resonance, as the half-524
wavelength nearly divides the depth H (true resonance is at mH = 5π). Thus, ζ̂(z) = 0 near525
z = 0, so in order to satisfy the boundary condition ζ̂(z = 0) = 1, the amplitude of the wave526
must be very large. At true resonance, this boundary condition cannot be met. In the opposite527
case, (shown for mH = 5.5π in magenta), there is destructive interference and the amplitude528
is at a minimum.529
Under the above assumptions, the horizontal group velocity is zero, therefore energy cannot530

escape downstream and the wave generation at resonance continually reinforces the wave531
field. If this were to happen in practise, the wave amplitude would become large enough532
to invalidate the linearity of the wave field, perhaps causing nonlinear wave breaking or533
modifying the wave field or the boundary condition so as to move the system away from534
resonance.535
When nonhydrostaticity is included, the horizontal group velocity is non-zero and the536

nature of the resonance changes slightly. The vertical wavenumber m(k) =
√

N2/U2 − k2,537
thus the solution (2.42) has singularities at538

k2 =
N2

U2 −
n2π2

H2 , n ∈ N . (2.44)539

Physically, these singularities still represent modes where an exact number of half vertical540
wavelengths fit in the domain, but now this happens at different values of U, N and H for541
each component k of the wave field.542
Mathematically, the resulting singularities of (2.42) are simple poles, so when the543

topographic spectrum ĥ(k) is continuous (as for isolated topography), the integral (2.23)544
along the real line can be moved to a contour of integration in complex k space that avoids545
the poles. To ensure that there is no disturbance at upstream infinity, the contour must be taken546
below rather than above the poles (McIntyre 1972). The solution can then be expressed as the547
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Cauchy principle value of (2.23) plus half the residues of the simple poles, which represent548
the nonhydrostatic resonant modes (Baines 1995). The solutions, when ĥ(k) is continuous,549
could be found numerically from (2.23) by choosing some contour of integration sufficiently550
far from the poles to avoid numerical difficulties. However, this becomes more difficult once551
rotation is included since the poles no longer all lie on the real axis. The numerical solution552
is also problematic since periodicity in the horizontal is assumed by default when taking a553
discretised Fourier transform, leading to spurious waves upstream of the isolated topography.554
If the topographic spectrum is discrete and includes one of the singular wavelengths defined555
by (2.44), then true resonance occurs and no steady solution exists.556
The inclusion of energy loss through viscosity and diffusivity aids the numerical solution557

by moving all poles off of the real line so that the integral (2.23) can be found numerically558
with a simple fast Fourier transform (FFT). Although true resonance is avoided, states can559
still be near resonant, as will be shown in §4.1. The topographic representation used here560
(see §3.3) consists of a spectrum of topographic wavenumbers, which numerically becomes561
a sum of discrete components. This is likely to enhance the resonance effect compared to a562
more realistic and inhomogeneous topography.563

2.8. Energy and momentum564

The vertical linear lee wave energy flux at a given height is given by pw, where an overbar565
here represents a horizontal average. At the topography (z = 0), this is equal to the product566
of the bottom mean flow velocity and the horizontally averaged form drag exerted by the567
topography on the mean flow, since using (2.21):568

pw |z=0 = U(0)phx |z=0 . (2.45)569

Taking the inner product of (2.7) - (2.9) with the perturbation velocity and multiplying (2.10)570
by the perturbation buoyancy gives the energy equation for the wave field. Taking a horizontal571
average and assuming a periodic domain in the horizontal then gives an expression for the572
divergence of the energy flux:573

pwz = −ρ0(UzF + D) , (2.46)574

where D = ε + Φ is the horizontally averaged energy loss from the flow, consisting of the575
dissipation rate ε = Ah |ux |

2 and irreversible mixing Φ = Dhb2
x/N

2, and576

F = uw −
f vb
N2 (2.47)577

is the wave pseudomomentum flux, or the Eliassen-Palm (E-P) flux (Eliassen & Palm 1960).578
If there are no critical levels (U , 0) it can be shown from (2.7) - (2.10) that the E-P flux F579
is related to the energy flux as (extended from Eliassen & Palm 1960):580

pw = −ρ0U
[
(u − uxAh/U)w −

f
N2 (b − Dhbx/U) v

]
(2.48)581

= −ρ0UF (1 + O (Ahk/U)) , (2.49)582583

where k is the characteristic wavenumber of the topography, and Ah ∼ Dh. Taking typical584
values considered here,Ah ∼ 1 m2 s−1, k ∼ 0.005 m−1, andU ∼ 0.1 m s−1, givingAhk/U ∼585
0.05 � 1. Thus the energy flux is approximately equal to the local velocity multiplied by the586
E-P flux even when there is energy loss.587
Since the source of the waves is at the bottom of the domain, the energy flux is always588

positive (or zero). (2.49) then gives that the E-P flux must have the opposite sign to U, thus589
F 6 0 in the cases considered here. This can be seen from the form of F (2.47) in the590
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non-rotating case, since a positive vertical velocity perturbation of the flow (w > 0) will591
correspond to the deceleration of a fluid parcel in the horizontal (u < 0), thus the momentum592
flux uw 6 0.593
In the inviscid problem, (2.46) and (2.49) together give (Eliassen & Palm 1960):594

Fz = 0 . (2.50)595

Therefore, the E-P flux is conserved when there is no energy lost to dissipation and mixing.596
When there is also no vertical shear of the mean flow (Uz = 0), (2.46) gives that the energy597
flux pw is also conserved. When the mean velocity increases or decreases with height, the598
energy flux increases or decreases correspondingly, but the E-P flux is still conserved. Any599
divergence of the E-P flux thus corresponds to the force exerted on the flow by the waves as600
they dissipate (Andrews &McIntyre 1976). It is the divergence of F rather than the Reynolds601
stress (or momentum flux) uw that gives the relevant lee wave forcing on the mean flow,602
since uw is in general not conserved - a paradox explained by Bretherton (1969).603
The total wave drag on the mean flow (defined here to be a positive quantity, though acting604

in the negative x direction) is therefore given by the integral of ρ0Fz over the depth of the605
ocean. Since there cannot be any energy or momentum flux through the upper boundary,606
pw |z=H = F(H) = 0, thus the wave drag is given by −ρ0F(0). Comparison of (2.45) and607
(2.49) then shows that up to O(Ahk/U) the wave drag is equal to the form drag.608

Since pw |z=H = F(H) = 0, if energy loss D is zero, F = 0 everywhere (from (2.50)) and609
pw = 0 everywhere (from (2.49)), thus there is no net topographic wave drag on the flow610
or energy conversion to lee waves in steady state. This is true for a periodic domain - in a611
non-periodic domain the waves would propagate infinitely far downstream, and boundary612
fluxes would become important in the equations (2.46) and (2.49). Energy loss is therefore a613
key component of the bounded study, as there can be no topographic wave drag without it.614
This is a realisation of the ‘non-acceleration theorem’, first discussed by Charney (1961). Of615
course, in the unbounded problem there must also be energy loss in order to have wave drag616
at the topography - but that energy loss can implicitly occur by allowing the lee waves to exit617
the given domain (such that pw |z=H > 0) and dissipate ‘elsewhere’.618
From (2.46), the wave energy flux can change both by exchange with a mean flow through619

the E-P flux (Kunze & Lien 2019), and by mixing and dissipation. Integrating (2.46) over620
the entire height of the domain gives:621

pw |z=0 − pw |z=H = ρ0

∫ H

0
UzF + D dz . (2.51)622

If there is an upper boundary and no background shear (Uz = 0), then pw |z=H = 0, and623
topographic energy conversion and wave drag are directly proportional to the total mixing624
and dissipation in the water column.625

2.9. Time dependence626

When calculating lee wave fluxes, it is usually assumed that the background fields and lee627
waves are steady. In reality, the geostrophic flows that generate lee waves vary on timescales628
of days to weeks. After a change in the background flow, the time taken for the lee wave field629
to equilibrate to the new steady state could be long compared to the typical timescales of the630
flow.631
The relevant timescale in this study is the time taken for the lee wave to propagate from632

the topography to the surface. Figure 4 shows the vertical group velocity (defined in (2.40))633
for various values of f and U. Lee waves generated at smaller horizontal scales (larger634
k) propagate faster, although they are also more likely to dissipate along the way due to635
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Figure 4: Vertical group velocity defined in (2.40) for the nonhydrostatic case and (a) fixed
U = 0.1 m s−1, varying f and (b) fixed f = −1 × 10−4 s−1, varying U, with H = 3 km,
N = 1 × 10−3 s−1.

sharper horizontal gradients. The effect of rotation on larger scales significantly slows the636
vertical group velocity, so that larger horizontal scale waves will take significantly longer to637
develop. The group velocity increases with U, so larger background velocities allow faster638
lee wave propagation. For a wave with wavelength 3 km in a background flow U = 0.1 m s−1,639
N = 1 × 10−3 s−1 and f = −1 × 10−4 s−1, the vertical group velocity is approximately 1 km640
per day, suggesting that a wave would take 3 days to propagate to the surface and a further 3641
days to reflect back to the topography in an ocean of depth 3000 m. For a vertically varying642
background flow as is typical of the ocean, the vertical group velocity and wavelength will643
change during propagation, modifying this result. The timescale separation of full water-644
column lee wave formation and the mesoscale eddy field is therefore not clear, and depends645
on the scale of the waves. However, in energetic regions of the ocean such as the Drake646
Passage shown in figure 1, large velocities can enable high vertical group velocities and the647
steady approximation for lee waves at certain scales is expected to be valid.648

2.10. Critical levels649

In the inviscid and non-rotating problem, there are singularities of (2.13) - (2.15) at levels650
where U = 0 (Booker & Bretherton 1967; Maslowe 1986). These are known as critical651
levels, where the horizontal phase speed of the wave (here equal to zero) equals the mean652
flow speed. At these levels, the vertical wavelength and group velocity vanish. No energy653
or momentum flux at the original wavenumber can propagate any further vertically, and654
the perturbation velocities become very large, invalidating the linear solution. In reality,655
instabilities and energy loss can lead to wave breaking and reflection at this level (Wurtele656
1996), thus critical levels may be a sink of lee wave energy in the ocean (Bell 1975). However,657
this requires that the mean flow speed reaches zero somewhere in the water column. This is658
not an ubiquitous feature of the geostrophic eddies of the ACC, although critical levels may659
exist. This mechanism may be more important in regions of layered currents such as near the660
equator or in western boundary currents.661
When rotation is included, there exist two further singularities of (2.13) at U = ±| f /k |,662

above and below the critical level U = 0 (Jones 1967). These act to prevent the vertical663
propagation of the wavenumber k, in a similar way to the critical level of the non-rotating664
problem at U = 0. However, since each critical level is specific to the wavenumber k (unlike665
for the non-rotating problem), if the spectrum of the topography is continuous it can be666
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shown that there need not be singularities of the linear problem at these critical levels since667
the relevant solutions of (2.13) are logarithmic and thus integrable over a spectrum (Wurtele668
et al. 1996). Therefore, in reality there is not a single well defined critical level for lee waves669
with rotation and a continuous spectrum of wavenumbers. However, the solutions may still670
become nonlinear so as to invalidate the linear solution and cause breaking. It can also be671
shown that when f , 0, the solution at U = 0 is no longer singular (Grimshaw 1975) -672
physically this is because all components have already reached their first critical level and673
stopped propagating.674
When the flow is sheared such that |U | decreases with height, energy transfers from the lee675

waves to the mean flow via the E-P flux (see (2.46)), leaving less energy to be dissipated at the676
critical level for a particular wavenumber k. Kunze & Lien (2019) examine this mechanism677
as a possible sink for lee wave energy in regions of intensified bottom flow. In particular, for678
lee wave energy generated at wavenumbers far from the inertial limit |Uk | = | f |, a greater679
proportion of the initial energy is available to be reabsorbed by a mean flow decreasing with680
height, allowing a smaller percentage to be dissipated at the critical level at |Uk | = | f | or681
elsewhere. For waves generated close to the inertial limit (from large scale topography), little682
energy is available for transfer to the mean flow, as it will instead soon reach its critical level683
and dissipate.684
The inclusion of viscosity and diffusivity allows non-singular solutions to be found at685

critical levels where |Uk | = | f |. However, near these levels the wave fields can become686
nonlinear, invalidating the linear approach. Furthermore, on the approach to these levels the687
vertical wavelength tends to zero, creating sharp vertical gradients and enhancing energy688
loss. Having neglected vertical viscosity and diffusivity in our solution, this energy loss does689
not take place. When the horizontal viscosity and diffusivity are large enough and shear690
small enough for the solutions to stay appropriately linear as a critical level is approached,691
the linear solution is valid, but may be unrealistic due to the lack of vertical dissipation and692
mixing. Velocity profiles that decrease with height are therefore not considered hereafter.693
For positively sheared background flows where the flow speed increases with height,694

energy instead transfers from the mean flow to the lee waves during propagation (see (2.46)).695
Since wind driven oceanic currents tend to be surface intensified, this may be a common696
occurrence. In this case (or if stratification N decreases with height), the waves may reach697
‘turning levels’, whereby their intrinsic frequency |Uk | reaches the buoyancy frequency N698
(Scorer 1949). At such levels the vertical wavenumber m tends to zero (see (2.18)), and the699
wave is reflected downward. Scorer (1949) showed that wave amplitudes in the resulting700
‘trapped’ wave field could be increased by the superposition of reflected waves, much like701
in the current study due to the upper boundary. These turning levels are not the focus of our702
study, but may occur in the solutions for certain wavenumbers.703

2.11. WKB solutions704

Before solving the full equation (2.24) numerically, we first consider how much progress can705
be made with WKB theory (Gill 1982). Under the assumption that waves are propagating706
through a slowly varying medium such that the wavelength is small compared to the scale707
of changes in the background flow, WKB theory can often be used to find closed form708
solutions. In addition to the necessary assumption for linear theory that there are no critical709
levels (where |U(z)k | = | f |), WKB theory requires the further assumption that there are710
no turning levels (where |U(z)k | = |N |), since the vertical wavelength tends to infinity at711
these levels (see (2.18)). However, under the assumption that waves are generated and stay712
within the propagating range (2.19), solutions with both the rigid lid and freely radiating713
boundary condition can be found. For the latter, the component of the solution with positive714
local vertical group velocity is taken as in the uniform background case. de Marez et al.715
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(2020) find inviscid and non-rotating lee wave solutions under this approximation with a716
freely radiating boundary condition. Here, we extend their analysis to include rotation and717
viscous terms.718
First, we write (for each k):719

ζ̂(z) = A(z)eiϕ(z) , (2.52)720

where A(z) and ϕ(z) are some real amplitude and phase such that ϕ′(z) ∼ m ∼ 1/λz , where721
λz is the vertical wavelength of the waves, itself varying over some lengthscale L � λz .722
A(z) also varies on the lengthscale L due to changes in the background flow and to viscosity.723
At this point we must therefore also take the weakly viscous approximation A2

h
k2/U2 � 1724

to ensure that the decay scale due to viscosity is larger than the vertical wavelength of the725
waves (see (2.56) and discussion for justification). This is likely to be realistic in the ocean,726
as discussed after (2.49). Substituting (2.52) into (2.24), taking real and imaginary parts, and727
neglecting second order terms in λz/L allows two independent solutions to be found:728

ζ̂±(k, z) = Q
− 1

4
r e

∫ z

0 −
1
2 (Pr±Qi/

√
Qr )±i

√
Qr dẑ , (2.53)729

where ẑ is a dummy integration variable, and Qr, Pr and Qi, Pi are the real and imaginary730
parts of P and Q, defined in (2.14) and (2.15). Setting Ah = Dh, and using the weakly731
viscous approximation, these become:732

Qr =
k2(N2 − αU2k2 −UUzz)

U2k2 − f 2 , Qi =
Ahk3 [

2Uk2(N2 − α f 2) −Uzz(U2k2 + f 2)
]

(U2k2 − f 2)2

(2.54)

733

Pr =
2 f 2Uz

U(U2k2 − f 2)
, Pi =

2Ah f 2Uzk(3U2k2 − f 2)

U2(U2k2 − f 2)2
. (2.55)734

735

Each term in (2.53) can be interpreted to understand the solutions.Q−
1
4

r e−
1
2

∫ z

0 Pr dẑ determines736
the change in amplitude of solution due to changes in the background flow, and is constant737

in a uniform flow. e∓
1
2

∫ z

0 Qi/
√
Qr dẑ determines how the wave amplitude exponentially decays738

(or ‘grows’, for a downwards propagating component) due to viscosity. e±i
∫ z

0
√
Qr dẑ is the739

oscillatory component, with wavenumber ∼
√

Qr (c.f. (2.17)).740
The solution to the bounded problem can then be found using bottom and upper boundary741

conditions (2.25) and (2.37), and the solution to the unbounded problem can be found by742
taking ζ+(k, z) (see discussion in §2.4.2) and using bottom boundary condition (2.25).743
Simplifying further by considering the non-rotating and hydrostatic case with f = α = 0,744

and assuming a linear velocity profile with Uzz = 0, the WKB solutions are given by:745

ζ̂±(k, z) =

√
U
N

e±
∫ z

0
N
U (i−

Ah k

U ) dẑ (2.56)746

Aside from reflections and viscous dissipation, we expect that as U and N vary, w ∼ ζ̂ ∼747 √
U/N , u ∼ ζ̂z ∼

√
N/U, and uw ∼ constant, as expected by conservation of the E-P flux748

(2.50). The length scale of viscous decay is given by U2/AhNk, and the ratio of the vertical749
wavelength to the viscous decay scale isAhk/U, justifying the conditionA2

h
k2/U2 � 1 for750

use of the weakly viscous approximation.751
Figure 5 shows the WKB non-hydrostatic, rotating, bounded solution for ζ̂(k, z) and the752

corresponding full numerical solution (to be explained in §3) for three different values of k753
and various background profiles ofU(z) and N(z). In figures 5a,c,d each of the wavenumbers754
k1, k2, k3 remains within the propagating range (2.19) throughout the vertical domain, and the755
solutions are oscillatory. In each case, as k increases, the amplitude of the solutions decreases,756
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Figure 5: Numerical andWKB solutions<[ ˆζ(k, z)] to the rotating, nonhydrostatic, bounded
problem defined in (2.24), with boundary conditions (2.25) and (2.37). Background fields
vary linearly from U(0) = 0.1 m s−1 and N(0) = 0.001 s−1. a) U(H) = U(0) and N(H) =
N(0), b) U(H) = 0.3 m s−1 and N(H) = N(0), c) U(H) = U(0) and N(H) = 0.003 s−1,
and d) U(H) = 0.3 m s−1 and N(H) = 0.003 s−1. Solutions are shown at k = {k1 =
kmin + 0.1(kmax − kmin), k2 = 0.5 ∗ (kmin + kmax), k3 = kmax − 0.1(kmax − kmin)},
where kmin = f /U(0), kmax = N(0)/U(0), and f = −1 × 10−4 s−1.

since the length scale of viscous decay decreases (c.f. (2.56)). The exponential decay when757
k = k3 (blue lines) is large enough that oscillatory component is small in comparison.758
In general, the numerical and WKB solutions agree well, although to a lesser extent as759

k increases since m decreases (c.f. (2.18)), and thus λz increases, invalidating the WKB760
approximation. In figure 5b U(z) increases and the solutions do not all stay within in the761
propagating range (2.19). Components k2 and k3 reach their turning levels where |Uk | = |N |,762
and the WKB approximation is not valid for these solutions.763
Comparing the k = k1 component in figure 5a (constant background fields) with figures764

5b (U increasing) and 5c (N increasing), we see that the scalings inferred from (2.53) hold,765
and the amplitude of ζ̂ (and w) increases with increasing U and decreases with increasing766
N . The vertical wavelengths scale with U/N , although they are also dependent on k, as is767
expected from (2.18).768
A further observation from figures 5a,d is the reduced impact of viscosity and larger769

amplitudes when U and N increase together, even though U/N is fixed. This is because the770
vertical group velocity of the waves is larger in this case - from (2.40) we can see that for771
f 2 � U2k2 � N2, the vertical group velocity ∼ U2k/N . The waves have therefore decayed772
less by the time they reach and reflect from the surface. Equivalently, the decay scale due to773
viscous dissipation U2/AhNk increases with U even when U/N is fixed.774
The WKB solutions are insightful provided there are no turning levels, and offer closed775

form solutions and insights that are not available from the numerical solutions. Similar776
approximations could also be made to implement a vertical and/or vertically variable777
viscosity, although we do not pursue this here to avoid further complexity. WKB solutions778
may therefore be more useful than numerical solutions in any eventual parametrisation of779
this process. However, hereafter we employ the full numerical solution, with no assumptions780
on the lengthscale of variations of the background flow or the viscous decay scale in order781
to study a wider range of wavenumbers and background flows.782

783
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3. Numerical solution784

The full solution to the viscous linear lee wave problem will be found subject to both the785
radiating upper boundary condition (in which case we require U and N to be constant with786
height, as discussed in §2.4) and the rigid lid upper boundary condition, in which case we787
consider general N2 > 0 and U(z) such that U > 0, Uz > 0 and f Uzz = 0 (see §2.1).788

3.1. Unbounded solver789

The solution can be found in the traditional way (Bell 1975), with the requirement the solution790
decays away from the topography as discussed in §2.4. The solution for ψ is given by (2.23),791
where ζ̂(k, z) satisfies (2.24) - (2.25), with the radiating upper boundary condition satisfied792
by taking the correct choice of branch for m. Note that P(k, z) = 0 and Q(k, z) = Q(k), so793
the solution for ζ̂ is simply:794

ζ̂(k, z) = eim(k)z , (3.1)795

where m2(k) = Q(k) and =(m) > 0. This can be implemented numerically for general796
topography h(x) by performing the Fourier transforms with a FFT. Once ψ is found, all other797
wave fields can be recovered.798

3.2. Bounded solver799

When the background flow is uniform in z, the solutions can be found similarly to the800
unbounded case above, using the analytic solution (2.42) for ζ̂(k, z). When U and N are not801
uniform, we use Galerkin methods to solve (2.24) - (2.37), an unforced second order ordinary802
differential equation with inhomogeneous boundary conditions. First, we transform it into a803
forced problem with homogeneous boundary conditions. Let804

ζ̂(k, z) = φ̂(k, z) + G(k, z) , (3.2)805

where G is some function such that G(k, 0) = 1 and G(k,H) = 0. Then φ̂ satisfies806

φ̂zz + P(k, z)φ̂z +Q(k, z)φ̂ = R(k, z) , (3.3)807

φ̂(k, 0) = 0 , (3.4)808

φ̂(k,H) = 0 , (3.5)809810

and R satisfies811

Gzz + P(k, z)Gz +Q(k, z)G = −R(k, z) . (3.6)812

G can be chosen to be any function satisfying G(k, 0) = 1 and G(k,H) = 0. We choose it813
so that R(k, 0) = R(k,H) = 0 by taking G to be a cubic polynomial in z, and solving for814
the coefficients. R can then be found via (3.6). The problem (3.3) - (3.5) can now be solved815
numerically using Galerkin methods. Specifically, for each k we decompose φ̂, P, Q, and R816
into finite Fourier sums with some truncation limit M:817

φ̂(k, z) =
M∑
s=1

as(k) sin
sπz
H

, P(k, z) =
M∑
j=1

pj(k) sin
( j − 1)πz

H
,818

Q(k, z) =
M∑
i=1

qi(k) cos
(i − 1)πz

H
, R(k, z) =

M∑
n=1

rn(k) sin
(n − 1)πz

H
, (3.7)819

820

where the qi , pj and rn are known and found via the relevant sine or cosine transform, and821

the coefficients as are to be found. Notice that the sine expansion of φ̂ and R ensures that822
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their boundary conditions are satisfied. However, if P , 0 or Qz , 0 at z = 0,H, the sine and823
cosine expansions of P and Q respectively must represent one or more discontinuities in P824
or Qz at endpoints. The numerical solution is therefore an approximation that is valid only in825
the interior, although (3.3) is satisfied everywhere by the series expansions. There can also be826
noise at the frequency of the truncation limit near the endpoints of the series representations827
due to the Gibbs phenomenon. With increasing truncation limit and vertical resolution, the828
interior series solution approaches the actual solution at all interior points - (2.46) can be829
used to validate this. As a consequence, quantities should be evaluated with care at z = 0,H,830
and (2.51) is used to find the wave drag rather than direct evaluation at z = 0.831
Substituting (3.7) into (3.3), integrating over z ∈ [0,H] and using the orthogonality832

properties of sine and cosine gives a matrix equation for the coefficients as:833

Asnan = Bsnrn , (3.8)834

where:835

Asn = −
(nπ

H

)2
δs,n +

nπ
2H
(ps−n+1 + ps+n+1 − pn−s+1) +

1
2
(qs−n+1 + qn−s+1 − qs+n+1) ,

(3.9)
836

Bsn = δn,s+1 . (3.10)837838

The as can now be found from (3.8) by inverting the matrix A. φ̂ can then be recovered from839
the coefficients as, ζ̂ found from (3.2), and ψ̂ found from (2.23).840

3.3. Topography841

The topography is found from the theoretical abyssal hill topographic spectrum proposed842
by Goff & Jordan (1988), and is similar to that used in previous lee wave modelling843
studies (Nikurashin & Ferrari 2010b, 2011; Nikurashin et al. 2014; Klymak 2018; Zheng844
& Nikurashin 2019). This choice allows both comparison to the results of these studies,845
and consideration of the behaviour of a range of different wavenumbers without expanding846
the parameter space of investigation. The 1D topography is found from the theoretical847
topographic spectrum P2D(k, l):848

P2D(k, l) =
2πh2

0(µ − 2)
k0l0

(
1 +

k2

k2
0
+

l2

l2
0

)− µ
2

, (3.11)849

by integrating over wavenumbers l. k0 and l0 are the characteristic horizontal wavenumbers, µ850
is the high wavenumber spectral slope, and h0 is the RMS abyssal hill height. For comparison851
with other recent lee wave studies, we set k0 = 2.3 × 10−4 m−1, l0 = 1.3 × 10−4 m−1 and852
µ = 3.5, in linewith representative parameters of theDrake Passage region used inNikurashin853
& Ferrari (2010a); Zheng & Nikurashin (2019). Next, P1D(k) is set to zero for wavenumbers854
k such that |U(0)k | < | f | or |U(0)k | > |N(0)|, since solutions in these ranges are non-855
propagating. The typical values used are N(0) = 1 × 10−3 s−1, U(0) = 0.1 m s−1 and f =856
−1 × 10−4 s−1, corresponding to a topography with wavelengths between ∼ 630 m and ∼857
6300 m. Note that the same topography is used throughout, even when f = 0.858
The topographic height differs from that used in the aforementioned studies, since the859

solver is linear and the solutions must therefore remain approximately linear to be valid.860
We normalise the topography resulting from the above steps so that the RMS of the final861
topography hrms = 25 m. This gives a Froude number FrL = Nhrms/U = 0.25 and is862
sufficient to keep the solution near linear such that the perturbation horizontal velocity u863
is less than the background velocity U, with the exception of resonant cases. This is an864
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unrealistically low Froude number for the rough topography of many parts of the Southern865
Ocean (Nikurashin & Ferrari 2010a), but since the perturbation quantities are linear in ĥ(k)866
(e.g. (2.23)), simple scaling arguments can recover the dependence on hrms. The goal of this867
study is not to make predictions of the actual magnitude of the lee wave field, but its structure868
in the vertical and dependence on viscosity and diffusivity, background fields, and boundary869
condition.870

3.4. Numerical set-up871

In the following section, the numerical solver is used to solve for the wave fields in a 2D872
domain of width 40 km, and height 3 km. The number of gridpoints in x and k is 800, and in873
z is 257. The truncation limit M (see (3.7)) is 200. Sensitivity tests were performed to ensure874
that increasing these resolutions does not impact the results.875
The horizontal Prandtl number Prh = Ah/Dh is assumed to be equal to one throughout876

- Shakespeare & Hogg (2017) discuss the effect of non-zero Prandtl number on lee waves.877
Hereafter, we refer only to the viscosity Ah, with the understanding that the diffusivity Dh878
varies similarly.879

4. Results880

Results from the numerical solvers are now presented. First, the hydrostatic and non-rotating881
solution is shown to demonstrate the resonance and modification of generation that occurs882
when the horizontal group velocity is zero, as described in §2.5 and §2.7. Next, nonhydrostatic883
effects and rotation are introduced to the solution, and the results compared to the previous884
case. Finally, the effects of non-uniform stratification and velocity are shown.885

4.1. Hydrostatic and non-rotating solutions886

Figures 6a,b show the numerical linear solution for the vertical velocity field under the887
hydrostatic and non-rotating approximations with viscosity Ah = 1 m2 s−1. In figure 6a,888
there is an open boundary (OB) and waves can freely propagate out of the domain, whereas889
in figure 6b the rigid lid (RL) boundary condition is implemented. The reflection of waves and890
superposition back onto the wave field is clear, as is the well defined vertical wavenumber891
m ∼ N/U = 0.01 m−1, giving a vertical wavelength of 2π/m ∼ 628 m. As discussed in892
§2.5, when f = α = 0, the horizontal component of group velocity is zero, as can be893
seen in the vertically radiating waves in figures 6a,b. As a result, waves reflected at the894
surface superimpose directly back onto the original wave field. Notice that near topography895
the solutions in figures 6a,b are similar since energy has been lost in the reflected wave,896
thus the solution consists mostly of the original upwards propagating component. This is897
also somewhat visible in figure 6c, which shows the difference between the bounded and898
unbounded solutions - the greatest differences are seen near the surface.899
Section 2.7 describes how resonance can occur when N2H2/U2 = n2π2, n ∈ N, in the900

inviscid, non-rotating, hydrostatic scenario. Figure 7 demonstrates this phenomenon with the901
given topography spectrum for varying viscosity Ah. Figure 7a shows the lee wave energy902
flux at z = 0, 1000 m, and H for the OB and RL solutions with H = 9.95πU/N ' 3126 m903
(constructive interference) and H = 9.5πU/N ' 2985 m (destructive interference). For the904
OB solution the energy flux at z = 0 is almost independent of viscosity - it is modified slightly905
by the local viscous term at z = 0 (not shown hereafter), but not the viscosity elsewhere in906
the domain since energy can only radiate away from the topography. As viscosity increases,907
the energy flux at z = 1000 m and the surface decreases as more energy is lost during908
propagation. At Ah = 1 m2 s−1, approximately 40% of the wave energy dissipates in the909
bottom 1000 m.910
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Figure 6: Vertical velocity (m s−1) from the linear solver (a) with an open boundary (OB),
f = 0, hydrostatic, (b) with a rigid lid (RL), f = 0, hydrostatic, (c) the difference between
(b) and (a), (d) with an open boundary (OB), f = −1 × 10−4 s−1, nonhydrostatic, (e) with
a rigid lid (RL), f = −1 × 10−4 s−1, nonhydrostatic, and (f) the difference between (e) and
(d). Ah = 1 m2 s−1, U = 0.1 m s−1, N = 1 × 10−3 s−1 for all cases. Topography h(x) is
shown, although it is applied in the linear approximation at its mean value of z = 0.

Figure 7: (a) Horizontally averaged vertical energy flux at various heights for the open
boundary (OB) and rigid lid (RL) hydrostatic and non-rotating solvers, against horizontal
viscosityAh . (b) Horizontally averaged vertical energy flux at z = 0 (proportional to wave
drag) for several values of viscosity Ah against ocean depth H. Vertical dashed lines and
triangles indicate the singularities N2H2/U2 = n2π2, n = 8, 9, 10, 11. Other vertical lines
indicate the values of H shown in (a).U = 0.1 m s−1, N = 1 × 10−3 s−1, f = 0 in both.

For the RL solver, the results are markedly different for the two different domain heights911
H. In both cases, the energy flux is zero at z = H due to the boundary condition, and zero912
when Ah = 0, since there can be no steady state energy flux into lee waves without mixing913
and dissipation (see (2.51)). Equivalently, all upwards propagating energy flux is cancelled914
out by the reflected downwards component. However, for the near resonant case, when a915
small value of viscosity Ah = 0.25 m2 s−1 is introduced the energy flux at the topography916
increases to over 2.5 times that with no upper boundary. Now that there is no longer exact917
cancellation of the energy flux, constructive interference of the wave field initially allows the918
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Figure 8: Horizontally averaged (a) energy flux (b) RMS vertical velocity, (c) energy loss,
(d) vertical gradient of the E-P flux as a function of z for the open boundary (OB) solver
and the rigid lid (RL) solver with constructive and destructive interference.Ah = 1 m2 s−1,
f = 0, U = 0.1 m s−1, N = 1 × 10−3 s−1.

energy flux to increase with increasingAh. As viscosity increases further, energy loss of the919
reflected wave reduces the constructive interference and the energy flux at z = 0 decreases,920
approaching that of the unbounded solution until it no longer ‘knows about’ the boundary.921
The energy flux at z = 1000 m follows a similar pattern, approaching the OB flux as Ah922
increases.923
In contrast, the energy flux in the RL solution with H = 9.5πU/N remains smaller than924

that in the OB solution throughout, since the effect of the boundary is to produce destructive925
interference with the original wave field. When the energy flux at z = 0 from the solution926
with constructive interference peaks at Ah = 0.25 m2 s−1, the energy flux from the solution927
with destructive interference is ∼ 13 times smaller.928
Figure 7b demonstrates this constructive/destructive behaviour of the wave field as H929

varies. Again, the OB energy flux at z = 0 is almost constant with changes inAh and constant930
with changes in H. The RL energy flux at z = 0 forAh = 0 is shown in black dashes, with the931
triangles and asymptotes indicating the singularities at N2H2/U2 = n2π2, n = 8, 9, 10, 11.932
WhenAh , 0, the solutions become continuous with peaks at the singularities (constructive933
interference) and troughs halfway between (destructive interference). As Ah increases, the934
energy flux approaches the constant value of the OB solution. The values of H in figure 7a935
are shown as vertical lines in figure 7b.936
The vertical structure of the energy flux, RMS vertical velocity, energy loss, and vertical937

gradient of the E-P flux are shown in figure 8 for the same cases described in figure 7938
at Ah = 1 m2 s−1. Figure 8a again demonstrates the difference in energy fluxes with the939
boundary condition and height of domain. Figure 8b shows a periodic vertical structure in940
the RMS vertical velocity wrms of the RL solutions that does not exist in the OB solution,941
due to the superposition of upwards and downwards propagating waves. This has the effect942
of enhancing the maximum wrms over a vertical wavelength, and decreasing the minimum,943
so that even in the destructive interference case where the energy flux in the RL solution944
is significantly smaller than the OB solution, the peak wrms is larger than that of the OB945
solution.946
The energy loss D (the sum of mixing and dissipation rate) is shown in figure 8c. In the947

RL case the vertical phases of the waves are aligned due to the surface boundary condition,948
and the mixing and dissipation rate individually have a sinusoidal structure out of phase with949
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each other (not shown). This is due to the energy distribution in the wave alternating between950
kinetic and potential over a vertical wavelength. There is over 2.5 times more energy loss951
in total when H = 9.95πU/N (constructive interference) compared to when H = 9.5πU/N952
(destructive interference). Comparing the OB and RL solutions for H = 9.5πU/N , it can953
be seen that energy loss in the RL solution is enhanced near the surface, suggesting that the954
upper boundary moves the distribution of wave energy (and therefore energy loss) higher up955
in the water column.956
The vertical gradient of the E-P flux is shown in figure 8d, representing the force on the957

flow due to wave breaking. In the RL cases, Fz has a periodic structure in the vertical due958
to the wave interference, which would impact the feedback of the waves on the mean flow.959
The vertical integral of Fz gives the total wave drag on the flow, hence the constructive960
interference produces a high drag state and the destructive interference a low drag state.961

4.2. Nonhydrostatic and rotating solutions962

When rotation ( f , 0) and nonhydrostatic (α = 1 in (2.9)) effects are introduced, the963
resonance and interference effects described in §4.1 are no longer as straightforward. As964
shown in §2.5, the horizontal component of the group velocity is now positive, allowing965
wave energy to travel downstream. Figures 6d,e show the vertical velocity field for the same966
background flow conditions and topography as figures 6a,b, but now with f = −1 × 10−4 s−1967
and α = 1. Waves now propagate downstream as well as vertically, and the resulting structure968
in the RL solution (figure 6e) is not as simple. However, the characteristic vertical phase969
lines and modal structure of the disturbances just below the surface caused by superposition970
of the reflected waves remain.971
Rotation reduces the generation of larger horizontal scale waves (e.g. figure 4a), and the972

dominant components of the wave field are therefore more easily dissipated than in the973
non-rotating solution shown in figures 6a,b. The vertical group velocity is also reduced by974
rotation (figure 4a), so the waves radiate more slowly away from the topography and lose975
more energy before reaching the surface. The wave field in the lower part of the domain976
of figure 6e therefore resembles the OB solution in figure 6d more closely than in the non-977
rotating solution, since the dominant wavelengths have lost more energy by the time they978
return to the topography. The similarity of these two fields near the topography can be seen979
in figure 6f, which shows the difference between figures 6e and 6d.980
Figure 9 shows the same data as figure 7, nowwith rotation and nonhydrostaticity included,981

for two domain heights H that have been picked to represent constructive and destructive982
interference of the new system. It is clear from figure 9b that the simple hydrostatic resonance983
has been replaced by multiple resonances where |m(k)H | ' nπ (c.f. (2.43)) for some n ∈ N984
and some k in the spectrum ĥ(k). As H varies, the energy flux at the topography varies985
eratically as different wavenumbers k in the topographic spectrum interfere constructively986
and destructively, with energy flux tending to that of the OB solution as Ah increases. The987
example values of H in figure 9a are shown as vertical lines in figure 9b. At H = 3015 m988
there is net destructive interference, and energy fluxes are below those of the OB solution,989
whereas at H = 2982 m there is net constructive interference, and the energy flux is higher990
than the OB solution. The RL solutions tend to the OB solutions with increasing Ah more991
quickly in figure 9a than in figure 7a, since the dominant wavelengths are shorter and decay992
faster.993
Importantly, since the horizontal group velocities are now positive so that the reflected994

wave does not directly superimpose onto the upwards propagating wave, the main reason for995
the modification of the bottom energy flux (and wave drag) with a reflecting upper boundary996
is the periodic nature of the topography used. The overlap parameter (defined in (2.41))997
for this set of parameters is above 2 for all wavenumbers (orange line in figure 3b). If the998
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Figure 9: Same as figure 7, for the non-hydrostatic and rotating casewith f = −1 × 10−4 s−1.
Vertical lines in (b) indicate the values of H shown in (a). Note that the domain heights H
picked to represent constructive and destructive interference of the system have changed.

Figure 10: Same as figure 8, for the nonhydrostatic and rotating case at variousAh . Results
from theRL solver are shown as a range (shaded) of solutionswithH = 2900 to 3100 m (with
axes scaled onto z ∈ [0, 3000 m]) to show the effect of constructive/destructive interference,
and in solid for H = 3000 m. f = −1 × 10−4 s−1, U = 0.1 m s−1, N = 1 × 10−3 s−1.

topography were isolated, the bottom energy flux may not be changed at all, dependent on999
the relevant overlap parameter. Even when there are near-resonances caused by constructive1000
interference (peaks in figure 9b), they are smaller in amplitude than those in the hydrostatic,1001
non-rotating case (figure 7b) since the waves are dispersive, and the resonances occur for1002
individual wavenumbers rather than the whole wave field.1003
From figure 9b, it is clear that even with periodic topography, when Ah & 0.5 m2 s−1, the1004

constructive and destructive interferences with varying H do not greatly affect the bottom1005
energy flux; for H > 3000 m the change from the open boundary case is less than 10% . H1006
is hereafter set to 3000 m, although shaded regions in figures 10, 12, 13, 14 and 16 show the1007
range of solutions for H between 2900 m and 3100 m (with axes scaled onto [0, 3000 m]), to1008
indicate the extent of the interference. Figure 10 shows the vertical structure of the fields as1009
in figure 8 for the nonhydrostatic and rotating RL and OB solutions at various values ofAh.1010
The profiles of energy flux in figure 10a show, as expected, that the RL solution approaches1011



28

the OB solution asAh increases. They will be identical when the energy flux at z = H in the1012
OB solution is zero.1013

As was found in the hydrostatic and non-rotating case in figure 8b, RMS vertical velocity1014
profiles shown in figure 10b are generally enhanced for the RL compared to the OB solution.1015
wrms oscillates in z due to the constructive and destructive interference of the wave field,1016
with the maxima significantly larger than the OB solution, and the minima often larger1017
too, especially in the lower viscosity cases. In particular, the subsurface maxima (located1018
approximately πU/2N ' 157 m below the surface) are significantly larger than the OB1019
solution at that level, 1.8 − 1.9 times larger for each of the values of Ah shown here. They1020
are also larger than the next deeper maximum below for each Ah, and even larger than the1021
RMS vertical velocities down to z = 700 m for Ah = 0.5 m2 s−1. The effect of the boundary1022
is clearly to enhance the RMS vertical velocity in the upper ocean.1023

The energy loss shown in figure 10c is larger in the RL case than in the OB case for each1024
value of Ah. This is expected, since energy leaves the domain in the OB case, but must stay1025
in the domain and be dissipated in the RL case. There is a subtlety in that in the RL case1026
the bottom energy flux itself can be modified (see shading in figure 10a, and figure 9b and1027
discussion), however the effect is not significant here. Consistent with the results of Zheng1028
& Nikurashin (2019), we find that the total energy loss over the water column is increased1029
from the OB case, though the difference is not large, between 1% for Ah = 2 m2 s−1 and1030
26% for Ah = 0.5 m2 s−1. Assuming that the energy flux at the topography is unchanged by1031
reflections, since U is uniform with height the total energy loss for each case in figure 10c1032
must be the same (see (2.51)) - but the OB solutions must be integrated to an infinite height1033
to get this result. The main result of note is the difference in the distribution of energy loss in1034
the water column when a RL is introduced - it is skewed towards the surface, with an increase1035
of 45% for Ah = 2 m2 s−1 and 70% for Ah = 0.5 m2 s−1 in the top 1000 m compared to the1036
OB case. Of course, these results are sensitive to the choice of ocean depth used, since in the1037
limit H → ∞ the RL and OB cases will be identical (excepting the perfectly inviscid case).1038
For greater depths H, the differences reported in the top 1000 m will be less pronounced.1039

The gradient of the E-P flux (figure 10d) has a similar structure to the energy loss (figure1040
10c). This is because U is constant with height, and neglecting the effect of the upper1041

boundary, both wave energy flux (the gradient of which for U constant is given by D from1042
(2.46)) and the E-P flux (with gradient Fz) decrease only due to mixing and dissipation.1043
Equivalently to noting as above that the total height integrated energy loss should be the1044
same, the total wave drag on the flow, given by the integral of Fz , should also be the same1045
for the cases shown, though when restricting to z ∈ [0, 3000 m] the total wave drag in the RL1046
solutions is larger than that of the OB solutions.1047

For idealised, nonlinear, 2D, open boundary simulations with a similar topographic1048
spectrum and flow parameters, Nikurashin & Ferrari (2010b) found that ∼ 10% of lee1049
wave energy dissipated in the bottom 1 km for FrL = 0.2, and ∼ 50% for FrL > 0.51050
(representative of the Drake Passage). From the black dot-dashed line in figure 9a, these1051
regimes would equate to Ah = 0.2 m2 s−1 and 0.7 m2 s−1 respectively here. Of course,1052
the change in implied turbulent viscosity between the two regimes is largely down to the1053
nonlinearity and subsequent breaking for higher Froude number. This suggests that if a linear1054
solution with a constant turbulent viscosity is to have any success in practise, it must be1055
adjusted for the actual nonlinearity of the waves.1056

Comparing the energy loss (figure 10c) with the common parametrisation for the expo-1057
nential vertical decay of lee wave energy dissipation (Nikurashin & Ferrari 2013; Melet1058
et al. 2014), the decay scale for the OB solver (calculated as the height above bottom at1059
which energy loss is equal to e−1 times its bottom value) is approximately 1700 m for1060
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Ah = 0.5 m2 s−1, 800 m for Ah = 1 m2 s−1, and 400 m for Ah = 2 m2 s−1. Proposed1061
values of the lee wave decay scale (Nikurashin & Ferrari 2013) range between 300 m and1062
1000 m. This together with the comparison of the energy flux to the nonlinear simulations1063
of Nikurashin & Ferrari (2010b) suggests that we are in the correct parameter space forAh,1064
and therefore that the upper boundary could have an influence on the wave field. We hereafter1065
show results for Ah = 0.5 and 1 m2 s−1.1066

4.3. Non-uniform velocity and stratification1067

In reality, the assumption that background flow is uniform with height is unlikely to be1068
valid when considering lee wave propagation throughout the entire water column. We now1069
consider the impact of varying U(z) and N(z) on the lee wave field.1070
Unlike in the unbounded case, when solving the lee wave problem with a rigid lid upper1071

boundary it is straightforward to solve with arbitrary mean flow velocity and stratification.1072
Some constraints do apply, and we only consider velocity profiles U(z) > 0 such that1073
f Uzz(z) = 0, so that the base state is effectively 2D (see §2.1), and U ′(z) > 0, to avoid1074
difficulties with critical levels (see §2.10). Typical oceanic conditions are characterised by1075
lower velocities at depth and larger velocities at the surface, so this scenario is realistic,1076
although lee wave generation at locations of intensified bottom velocities may also be1077
important (Kunze & Lien 2019). The only constraint on the stratification N2 is that N2 > 01078
so that the mean flow is statically stable.1079
First, U is varied linearly from U(0) = 0.1 m s−1 to U(H) = 0.1, 0.2 or 0.3 m s−1 with1080

N = 1 × 10−3 s−1 and Ah = 0.5 and 1 m2 s−1. The vertical velocity fields when U(H) = 0.11081
and 0.3 m s−1 are shown in figures 11a,b respectively for Ah = 1 m2 s−1. It is clear that1082
increasing U(H) has a large effect on the wave field, with vertical velocities increased1083
throughout the domain and increased dominant vertical and horizontal wavelengths as U(z)1084
increases.1085
As before, waves are generated at the topography in the range | f | < |U(0)k | < |N |. This1086

range can be visualised in figure 3b as the range of wavelengths for which the overlap1087
parameter γ is finite for U = 0.1 m s−1 (orange line). These are the only propagating1088
wavelengths that exist in the solution. However, as U increases with height to U(H) =1089
0.3 m s−1, the range of wavenumbers that can propagate shifts to | f | < |U(H)k | < |N |,1090
shown in figure 3b as the range for which γ is finite for U = 0.3 m s−1 (magenta line).1091
Thus, wavenumbers k such that |N |/|U(H)| < |k | < |N |/|U(0)| must reach their turning1092
levels and reflect downwards before reaching the surface. The waves that reach the surface1093
therefore have an increased minimum horizontal wavelength, as seen in figure 11b, and decay1094
more slowly as a result. Furthermore, the WKB solution (2.56) for waves that do not reach1095
turning levels showed (in the hydrostatic and non-rotating limit) that the viscous decay scale1096
∼ U2/AhNk, thus asU increases the effect of viscosity is felt less by the waves. Equivalently,1097
the vertical group velocity of the waves increases with increasing U (shown for uniform U in1098
figure 4b), leading to less energy loss during propagation over a given vertical distance. The1099
reduced viscous decay results in increased interference between upwards and downwards1100
propagating waves (c.f. figure 9), shown in figure 12 as the shaded range becoming wider1101
with both increasing U(H) and decreasing Ah.1102
The energy flux when Ah = 0.5 m2 s−1 (figure 12a) is highly dependent on the choice of1103

depth H, and there is significant interference when U(H) = 0.2 and 0.3 m s−1 (shown by1104
the wide magenta and blue shaded areas). The bottom energy flux when U(H) = 0.3 m s−11105
changes from 65 - 155% of its OB value (black dashed line) as H varies between 2900 and1106
3100 m, and this makes it difficult to compare the profiles of these solutions. However, the1107
energy flux when Ah = 1 m2 s−1 (figure 12e) at all levels is greater when U(H) = 0.2 and1108
0.3 m s−1 than when U is uniform, except for near the topography when there is significant1109
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Figure 11: Vertical velocity (m s−1) in the RL solver, with linear U(z) and N(z) with
bottom values U(0) = 0.1 m s−1, N(0) = 1 × 10−3 s−1, and (a) U(H) = 0.1 m s−1, N(H) =
1 × 10−3 s−1 (b) U(H) = 0.3 m s−1, N(H) = 1 × 10−3 s−1 (c) U(H) = 0.1 m s−1, N(H) =
3 × 10−3 s−1 (d) U(H) = 0.3 m s−1, N(H) = 3 × 10−3 s−1. Ah = 1 m2 s−1, α = 1, and
f = −1 × 10−4 s−1 in all cases. Topography h(x) is shown, although it is applied in the
linear approximation at its mean value of z = 0.

destructive interference (blue shaded area). Aside from the ranges of the solutions (shaded),1110
there is not a large difference between the energy fluxes in the cases U(H) = 0.2 and1111
0.3 m s−1, likely due to the effect of certain larger wavenumbers reaching their turning levels1112
at |U(z)k | = |N | and reflecting before reaching the surface, decreasing upwards energy flux1113
at higher levels. From (2.49) and (2.50), the energy flux pw is expected to increase with1114
increasing U(z) when there is no energy loss and the E-P flux is conserved. However, the RL1115
solution constrains the energy flux to vanish at the surface, thus the convexity of the energy1116
flux in z will be determined by the balance between the gradient of the E-P flux due to energy1117
loss and reflection, and the gradient of U(z).1118
The most obvious result of increasing the velocity with height is the increase in the1119

RMS vertical velocity, shown in figures 12b,f. Despite the large ranges due to interference,1120
especially when Ah = 0.5 m2 s−1, increasing U(H) clearly increases wrms over the whole1121
water column. This is consistent with the expected scaling from theWKB solution (2.56) and1122
figure 5b. WhenAh = 1 m2 s−1 and U(H) = 0.3 m s−1 (figure 12f, blue line), the subsurface1123
maximum is 4.5 times as large as that when U(H) = 0.1 m s−1 (black line), and over twice1124
as large as its bottom value. The vertical wavelength also clearly increases with increasing1125
U, as also seen in figure 11b.1126
As discussed by Kunze & Lien (2019), lee waves can exchange energy with the mean1127

flow due to conservation of wave action E/kU, where E is the energy density (Bretherton1128
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& Garrett 1969). For a given wavenumber k, when there is no energy lost to dissipation,1129
the wave energy density will therefore increase with height when U increases with height.1130
Here, the energy lost to dissipation means that the wave action is not conserved, but we still1131
expect the wave energy to increase in the upper water column when U(z) increases with1132
height compared to when U(z) is constant. Energy loss would also be expected to increase1133
along with wave energy density for a given wavenumber. Similarly to the energy flux in1134
figure 12a, the large shaded areas in the energy loss in figure 12c due to interferences in the1135
case Ah = 0.5 m2 s−1 make interpretation difficult. However, figure 12g for Ah = 1 m2 s−11136
demonstrates that energy loss over the water column does generally increase with increasing1137
U(H). However, because energy at some wavenumbers no longer reaches the surface, having1138
reached the corresponding turning level at |U(z)k | = |N |, the increase in wave energy (and1139
energy loss) in the upper ocean is not as great for the multichromatic spectrum of waves as1140
for a single component that reaches the surface. The waves that do reach the surface also1141
experience less energy loss due to their larger horizontal scale.1142
Although the energy loss is generally greater when U increases with z, figures 12d,h show1143

that the vertical gradient of the E-P flux is not, aside from the changes due to interference.1144
Since F is conserved when there is no mixing or dissipation, the flux does not increase due1145
to interaction with the shear. Neglecting wave interference from surface reflections at the1146
topography, the total wave drag −ρ0F(0) depends only on the local bottom fields, and thus1147
remains constant with changes in U with height. However, the total mixing and dissipation1148
need not, since the waves can gain energy from the mean flow during propagation.1149
We now consider the effect of increasing the stratification N(z) on the lee waves in the RL1150

solver. The vertical velocity field is shown in figure 11c. The vertical wavelengths are clearly1151
reduced as N increases, since the vertical wavenumber m ∼ N/U. The vertical velocities are1152
also reduced higher in the water column when compared to figure 11a. Figure 13 shows the1153
horizontally averaged vertical profiles as in figure 12. It is immediately clear from the lack of1154
shaded area that in the cases shown, constructive/ destructive interference does not greatly1155
affect the amplitude of the solutions, even for the lower value of Ah, and to a decreasing1156
extent for increasing N(H). This is because the vertical group velocity (2.40) scales as 1/N ,1157
so the waves slow down and lose more energy during their propagation and thus interact1158
less. If vertical viscosity and diffusivity were implemented, the smaller vertical wavelengths1159
associated with increased N would dissipate even more quickly.1160
Figures 13b,f show that the effect of increasing N with height is to reduce the vertical1161

velocities, in agreement with the WKB solution (2.56). This is because increasing N whenU1162
is fixed makes the waves more inertial (since the upper bound for the radiating wavenumber1163
range N/U is increased, while the lower bound f /U is fixed). Since varying N with height1164
does not affect the energy flux in the same way as changing the velocity does (c.f. (2.49)), the1165
other results in figure 13 are easily interpreted. The increase in energy loss associated with1166
reduced group velocity when N is increasing causes a reduction in energy flux (figure 13e,1167
less clear in figure 13a due to interference), and a skewing of energy loss (figures 13c,g) and1168
gradient of the E-P flux (figure 13d,h) towards the lower part of the domain. Note from (2.51)1169
that the vertically integrated energy loss for a given Ah is constant with changing N(H)1170
(when U(z) is constant), as is the total wave drag force on the flow, given by the integral of1171
Fz .1172
Next, we present results for simultaneously varying U(z) and N(z), keeping their ratio1173

constant at U(z) = 100 × N(z), so that the vertical wavelengths of the lee wave field are1174
comparable to the uniform background case. This is a fairly realistic scenario for the ocean,1175
where bothU and N can be expected to increase with height above bottom. Figure 11d shows1176
the vertical velocity field when both U and N triple between the bottom and the surface.1177
The vertical wavelengths are comparable with figure 11a as expected, however, the vertical1178
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Figure 12: Same fields as figure 8, with Ah = 0.5 m s−2 (top row) and Ah = 1 m s−2

(bottom row). Solutions are for the nonhydrostatic and rotating case at various U(H),
where U(z) is linear and U(0) = 0.1 m s−1. Shading as in figure 10, f = −1 × 10−4 s−1,
N = 1 × 10−3 s−1.

velocities are intensified, and there is more interference of the upwards and downwards1179
propagating waves.1180
The energy flux with height is shown in figures 14a,e for Ah = 0.5 and 1 m2 s−11181

respectively. As in figure 12, the ranges associated with interference are wider for largerU(H)1182
and smallerAh. In general, upper ocean energy flux appears to increase with increasingU(H)1183
and N(H), although this isn’t clear forAh = 0.5 m2 s−1 because of the significant interference.1184
This is due to energy flux increasing when U increases with height (see (2.46) and (2.50)),1185
without the impact of turning levels as in figure 12, sinceU/N remains constant. The gradient1186
of the E-P flux (figures 14d,h), has a similar structure in the vertical for each case, with a1187
greater range due to interference for larger U(H) and smaller Ah. The distribution of the1188
forcing on the mean flow is therefore largely unchanged by increasing U and N with height.1189
The upper ocean energy loss for Ah = 1 m2 s−1 (figure 14g) increases with increasing1190

U(H) and N(H), which can be explained as before by conservation of wave action as U1191
increases, transferring energy to the wave field and increasing the wave energy density and1192
hence energy loss. However, unlike theU increasing case (figure 12c), the energy loss at most1193
heights is now strictly increasing with U(H), since the constant ratio of U/N means that the1194
range of radiating wavenumbers does not change with height, thus no wavenumber reaches1195
a turning level. The result of this is that the energy loss in the upper ocean is significantly1196
enhanced when U and N increase with height. The energy loss in the upper 1000 m is three1197
times larger when U and N approximately triple with height than when they are uniform1198
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Figure 13: Same fields as figure 8, with Ah = 0.5 m s−2 (top row) and Ah = 1 m s−2

(bottom row). Solutions are for the nonhydrostatic and rotating case at various N(H),
where N(z) is linear and N(0) = 1 × 10−3 s−1. Shading as in figure 10, f = −1 × 10−4 s−1,
U = 0.1 m s−1.

throughout the water column (both with a RL and H = 3000 m). For the lower viscosity1199
value Ah = 0.5 m2 s−1 (figure 14c), the wide shaded regions due to interference make this1200
result less clear, but the constructive interference allows the energy loss in the upper 1000 m1201
for U(H) = 0.3 m s−1 to be up to ∼ 6 times as large as in the OB case.1202
The change in energy loss with height for the various background flowswithAh = 1 m2 s−11203

is also illustrated in figure 15. As we have seen, energy loss increases slightly with height1204
with respect to the uniform fields when U increases with height, and decreases when N1205
increases with height. The combination of increasing both U and N , however, allows the1206
waves to stay in their radiating range and gives the maximum upper ocean energy loss.1207
Another interesting result is the large increase in RMS vertical velocity with height whenU1208

and N increase together (figures 14b,f), suggesting that the increase ofwrms due to increasing1209
U is dominant over the decrease in wrms due to increasing N (see figures 12b,f and 13b,f).1210
This is consistent with the WKB solution (2.56) and figure 5d, and as discussed in §2.11 is1211
because of reduced energy loss due to the increased viscous decay scale, or equivalently the1212
increased vertical group velocity, compared to the uniform background case. The subsurface1213
maximum of wrms when U(H) = 0.3 m s−1 and Ah = 1 m2 s−1 is twice as large as that1214
when U(H) = 0.1 m s−1, and nearly 4 times as large as wrms in the OB solution at the same1215
height. The impact of the boundary is substantial, with the variation in wrms over a vertical1216
wavelength due to superposition increasing with increasing U(H) and N(H).1217
Finally, we consider the effect of a more realistic stratification in the upper ocean.1218
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Figure 14: Same fields as figure 8, with Ah = 0.5 m s−2 (top row) and Ah = 1 m s−2

(bottom row). Solutions are for the nonhydrostatic and rotating case at variousU(H), where
U(H) is linear and U(H) = 100N(H). Shading as in figure 10, f = −1 × 10−4 s−1.

Typically, there exists a maximum of stratification at the thermocline, and a mixed layer1219
at the surface where stratification is near zero. We use a simplified example stratification1220
representative of the mean stratification in realistic Drake Passage simulations (which are1221
themselves constrained by observed hydrographic information), having amaximum at around1222
500 m depth and decreasing to zero at the surface (Mashayek et al. 2017). In reality, the1223
stratification can have a second sharpmaximum below the thin surfacemixed layer dependent1224
on seasonality, but the deeper thermocline is a persistent feature. For comparison with the1225
previous experiments, N is linear (and N2 quadratic) at depth, and modified using a tanh1226
function to create the thermocline. Figure 16a shows the profiles of N2 used, U is linearly1227
increasing from U(0) = 0.1 to U(H) = 0.3 m s−1, and Ah = 1 m s−2. The effect of the1228
drop in stratification at the surface, as might be expected from figures 13b,f, is to further1229
enhance the subsurface peak in RMS vertical velocity (figure 16b). Although wrms increases,1230
the buoyancy and horizontal velocity perturbations decrease with N2 near the surface (not1231
shown), leading to a decrease in total flow energy and energy loss (figure 16c). The combined1232
effect of increasing velocity with height above bottom, the reflecting upper boundary, and a1233
near surface decrease in stratification all act to increase the subsurface peak in RMS vertical1234
velocity.1235
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Figure 15: Energy loss D (m2 s−3) in the RL solver, with the samemean flow and parameters
described in figure 11.

5. Conclusions1236

Lee waves generated by stratified geostrophic flow over topography play an important role1237
in the buoyancy and momentum budgets of the ocean, causing diapycnal mixing and drag1238
on the mean flow when they break. Occurring at the sub-gridscale of global models, they1239
require parametrisation to represent their effect on the mean flow.1240
Linear theory with constant background velocity and stratification and a radiating upper1241

boundary has often been used to predict the generation rate of lee waves. However, although1242
this approximation may be sufficient locally to estimate the generation of lee waves, it does1243
not allow any deductions on their propagation throughout the water column and eventual1244
dissipation or re-absorption to the mean flow. The mean velocity and stratification in typical1245
oceanic flows varies by up to an order of magnitude between the abyssal ocean and the1246
surface, and the ocean surface is poorly represented by a radiating boundary condition,1247
instead acting to reflect incident lee waves.1248
Motivated by high resolution realistic simulations of the Drake Passage, a region of high1249

lee wave generation, we developed a theory for lee waves with an air-sea boundary, variable1250
background velocity and stratification, and a representation of energy lost to dissipation and1251
mixing. The structures observed in the simulations agree qualitatively with our theoretical1252
predictions, and reconciling the two will be the subject of a follow up study.1253
We find that allowing lee waves to reflect at the surface has the potential to substantially1254

modify the lee wave field, increasing vertical velocities andmixing and dissipation, especially1255
in the upper ocean where shear and stratification are typically enhanced.1256
Allowing waves to reflect at the surface allows interference between the upwards and1257

downwards propagating components, and this can modify the lee wave generation itself.1258
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Figure 16: (a) Stratification, (b) RMS vertical velocity, and (c) energy loss as a function
of z for the RL solver. U is linear with U(z) = 0.1(1 + 2z/H). The linear N profile
is N(z) = 0.001(1 + 2z/H), and with the thermocline included is N(z) = 0.001(1 +
2z/H)

√
(1 + tanh(18 − 20z/H))/(1 + tanh(18)). Results from the RL solver are shown as a

range (shaded) of solutionswithH = 2900 to 3100 m (with axes scaled onto z ∈ [0, 3000 m])
to show the effect of constructive/destructive interference, and in solid at for H = 3000 m.
Ah = 1 m2 s−1, f = −1 × 10−4 s−1.

Under certain conditions, this may manifest as a resonance of the system - although rotation1259
and non-hydrostaticity act to lessen this effect.1260
The upper boundary alone acts to enhance near surface vertical velocities, and shift the1261

energy loss of the lee wave field higher in the water column. However, the impact of our1262
full water column view of lee waves is most significant when combined with non-uniform1263
background flows, as are typical of realistic ocean conditions.1264
When the background velocity increases with height above the sea floor, as is often the1265

case in wind driven geostrophic flows, we find that the impact of the reflection from the1266
surface increases and that the lee wave vertical velocities are significantly enhanced in1267
the upper ocean. The lee wave drag is largely unchanged, but the energy in the lee wave1268
field, and hence the energy lost to mixing and dissipation, increases since energy transfers1269
from the sheared mean flow to the waves. If the stratification also increases with height1270
such that U/N remains fairly constant, the waves that are generated at topography are all1271
able to reach the surface, increasing the upper ocean wave energy and energy loss. The1272
inclusion of a weakly stratified surface mixed layer acts to enhance near surface vertical1273
velocities further, and reduces near surface energy loss. Therefore, parametrising the effect1274
of lee waves propagating through changing background flows may be essential for correctly1275
estimating their impact on mixing.1276
The simplifications made in this study leave some questions as to the applicability of1277

these results to the real ocean. In particular, although linear lee wave approximations have1278
been shown to give good agreement with nonlinear simulations under certain conditions,1279
the wave interactions discussed here that cause modification to wave drag and energy flux1280
could be significantly altered by nonlinear topography. The assumption of linearity also has1281
consequences for the wave-mean flow interaction, particularly when the background flow1282
changes with height and energy transfers between waves and mean flow. Here, the mean flow1283
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is forced to remain constant, whereas in practise the mean flow would lose energy to the lee1284
waves.1285

The contribution of time dependent components of the background flow, including tides,1286
could change the nature of the wave generation and interactions. The coupling between1287
internal tide and lee wave generation has recently been suggested to significantly affect1288
lee wave generation rates, reducing global estimates of lee wave energy flux by 13-19%1289
(Shakespeare 2020; Dossmann et al. 2020). The unsteady nature of tides themselves could1290
also impact the lee wave reflection and superposition through modification of the large scale1291
flow. Further studies are needed to quantify the impact of tidal flows on the mechanisms1292
discussed here.1293

The constructive and destructive interference of the wave field may be overestimated due1294
to the use of a periodic topography consisting of a finite sum of topographic components.1295
It is likely that for a realistic topography, where the peaks of topography that generate lee1296
waves are isolated and at different heights, this effect is substantially reduced. The effect1297
of 3D topography could also alter the results, and this could be investigated in the linear1298
framework by extending the solver.1299

We implemented a horizontal viscosity and diffusivity in place of the full Laplacian1300
parametrisation of lee wave energy loss for mathematical simplicity, which becomes unreal-1301
istic when the vertical scale of lee waves changes substantially over the depth of the water1302
column. Breaking due to instabilities of the lee waves themselves is not explicitly accounted1303
for, since the viscosity and diffusivity are constant with height. The appropriate values of1304
viscosity and diffusivity should also vary with the nonlinearity of the waves themselves,1305
and this could be especially important when the background flow changes with height,1306
potentially changing the stability of the waves. The theory could be extended to allow a more1307
realistic and vertically varying viscosity profile in a future work. However, using this simple1308
parametrisation, the resulting energy loss can be tuned to agree with results from previous1309
nonlinear simulations with similar topography and background flow (Nikurashin & Ferrari1310
2010b).1311

A rigid lid boundary condition has been used here, justified by the lack of impact of a free1312
surface on the structure of the waves in the interior. However, predictions of the sea surface1313
height imprint of these waves could be made within our theory. This could perhaps eventually1314
allow observational diagnostics - modern satellite observations are fast approaching the1315
O(1 km) horizontal resolution and O(1 cm) precision that would be necessary to detect the1316
very largest waves (Neeck et al. 2012). Satellite sun glitter images can also qualitatively be1317
used to diagnose lee wave surface signatures (de Marez et al. 2020). The rigid lid condition1318
would however be appropriate for modelling under-ice lee waves, whose surface normal1319
stress could play a role in sea ice or ice shelf dynamics.1320

The results of this study indicate that the reflection of lee waves at the ocean surface and1321
their presence in the upper ocean cannot always be neglected, especially when the mean1322
flow is surface intensified. Climate model parametrisations may need to take into account1323
the impact of changing background mean flows and surface reflections in order to correctly1324
estimate the vertical structure of mixing and dissipation. Enhanced upper oceanmixing could1325
have important consequences for tracer transport between the surface and interior ocean. The1326
dynamics of the near surface wave field and its interaction with surface submesoscales should1327
also be investigated further, since the horizontal lengthscales are very similar. Further studies1328
will aim to verify the theory developed here against realistic nonlinear simulations, and1329
investigate the impact of these waves on surface processes.1330
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