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Geophysical flows are typically composed of wave and mean motions with a wide range8
of overlapping temporal scales, making separation between the two types of motion in wave-9
resolving numerical simulations challenging. Lagrangian filtering – whereby a temporal10
filter is applied in the frame of the flow – is an effective way to overcome this challenge,11
allowing clean separation of waves from mean flow based on frequency separation in a12
Lagrangian frame. Previous implementations of Lagrangian filtering have used particle13
tracking approaches, which are subject to large memory requirements or difficulties with14
particle clustering. Kafiabad & Vanneste (2023, KV23) recently proposed a novel method15
for finding Lagrangian means without particle tracking by solving a set of partial differential16
equations alongside the governing equations of the flow. In this work, we adapt the approach17
of KV23 to develop a flexible, on-the-fly, PDE-based method for Lagrangian filtering using18
arbitrary convolutional filters. We present several different wave–mean decompositions,19
demonstrating that our Lagrangian methods are capable of recovering a clean wave-field20
from a nonlinear simulation of geostrophic turbulence interacting with Poincaré waves.21
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1. Introduction23

The motions of the ocean and atmosphere involve processes with a wide range of spatial24
and temporal scales. In particular, fast internal waves propagate throughout these stratified,25
rotating fluids, interacting with slower eddies and currents. Internal waves play a key role26
in the momentum and energy budgets of the ocean and atmosphere, forcing the mean flow,27
transferring energy between large and small scales, and causing turbulent mixing when they28
break (Naveira Garabato et al. 2013; Waterhouse 2014; MacKinnon 2017; Whalen et al.29
2018; Shakespeare & Hogg 2019; Whalen et al. 2020). Understanding and quantifying the30
role of internal waves in shaping the larger scale circulation is key to designing accurate31
climate models, since their spatial scales cannot be directly resolved and must instead be32
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parameterised. Wave-resolving numerical simulations are an important tool for understanding33
the physics that underpins these parameterisations.34

A primary challenge in the study of interactions of internal waves with the non-wave35
flow in numerical wave-resolving simulations is separating the processes so that they can36
be quantified and their physics understood. We hereafter refer to the non-wave flow as the37
mean flow, with the understanding that this does not place any restriction on the temporal38
or spatial scales of the mean flow at this stage. Many different methods have been proposed39
for separating waves from the mean flow, often relying on defining a ‘balanced’ mean flow40
based on dynamical considerations (for example, geostrophic balance in the limit of small41
Rossby number, or its higher order variants (Vallis 2017; Vanneste 2013)), and taking the42
wave component of the flow to be the ‘unbalanced’ residual (Bühler 2014). However, recent43
studies have highlighted the importance of mean flow regimes that are 𝑂 (1) in the Rossby44
number, indicating that inertial and rotational forces on the flow are comparable, and may45
therefore be ‘unbalanced’ (McWilliams 2016; Taylor & Thompson 2023). These flows are46
termed submesoscale in the ocean, and mesoscale in the atmosphere.47

Submesoscale currents and internal waves are both typically energetic in the important48
surface and bottom boundary layers of the ocean, and despite our inability to directly capture49
their effects in climate models, they are starting to be regularly resolved in realistic, regional50
high-resolution numerical models (e.g. Nagai et al. 2015; Bachman et al. 2017; Su et al.51
2018; Baker et al. 2023). Understanding the physics of their interactions (to ultimately52
inform parameterisations in coarser models) has therefore become a topic of significant53
recent interest (e.g. Tedesco et al. 2023; Barkan et al. 2024; Thomas et al. 2024), requiring54
an effective way to separate the wave-like part of the flow from other motions. In particular,55
to study wave generation, propagation, and mixing it is important to know the wave-like56
part of the flow, not only the mean flow. This task is more challenging in practice than only57
finding the mean flow, since the waves are often lower amplitude than the mean flow and58
therefore more easily contaminated by imperfect decompositions.59

Averaging techniques based on spatial or temporal scales are often used to define a mean60
state, with the wave component of the flow defined as the perturbation from this mean.61
In particular, weighted averages can be used to control the temporal frequencies or spatial62
wavenumbers that constitute the mean state (see §2.1). We refer to these weighted averages63
as filters, but keep in mind that filtering is just a special case of averaging.64

Filtering on wavenumber or frequency also presents problems for separating waves from65
the mean flow. Internal waves can have wavelengths ranging from hundreds of metres to66
hundreds of kilometres, often overlapping in spatial scales with motions such as oceanic67
submesoscales. Moreover, whilst internal waves are often considered ‘fast’ and the non-wave68
flow ‘slow’, this is a simplification. Internal waves in geophysical flows have an intrinsic69
frequency greater than 𝑓 , where 𝑓 is the Coriolis parameter and quantifies the rate of Earth’s70
rotation (although this can be modified to an ‘effective’ Coriolis parameter by background71
vorticity or baroclinicity of the flow; Kunze 1985; Whitt & Thomas 2013). However, the72
intrinsic frequency is the frequency in the frame of the flow, rather than the rest frame. Due73
to Doppler shifting of internal waves by the mean flow, there is no such frequency constraint74
on internal waves in the rest frame. Indeed, an important class of internal waves in the ocean75
and atmosphere is steady, topographically-generated lee waves, which have zero frequency76
in the fluid’s rest frame.77

Furthermore, when the waves have non-negligible amplitude they perturb the mean flow78
with the wave frequency, so that the non-wave component of a flow found by temporally79
filtering in the rest frame is ‘blurred’ by the presence of waves (KV23). These two effects80
often render temporal filtering in the rest frame (Eulerian temporal filtering) problematic.81

A proposed solution to these filtering difficulties is to perform the temporal filter not in the82
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rest frame, but in the frame moving with the flow. This has been termed Lagrangian filtering83
(Nagai et al. 2015; Shakespeare & Hogg 2017). The key assumption in the geophysical context84
is that internal waves can be defined by a super-inertial (> 𝑓 ) intrinsic frequency (Polzin &85
Lvov 2011), although 𝑓 can be replaced by an effective inertial frequency when background86
vorticity is strong (Kunze 1985; Rama et al. 2022). Whilst Lagrangian filtering in numerical87
simulations is a relatively recent development, the power of Lagrangian mean theories has88
been well-known since pioneering theoretical work of Bretherton (1971), Soward (1972),89
and Andrews & McIntyre (1978). In particular, the development of Generalised Lagrangian90
Mean (GLM) theory by Andrews & McIntyre (1978) showed that a tractable definition of91
Lagrangian means is available and, when applied to the equations of fluid motion, leads to92
simple and natural equations for the Lagrangian mean that are not available for the Eulerian93
mean (Andrews & McIntyre 1978; Bühler 2014; Gilbert & Vanneste 2018; Kafiabad et al.94
2021; Gilbert & Vanneste 2024).95

Despite the many benefits of Lagrangian temporal averaging (and, as a special case,96
Lagrangian filtering) over Eulerian averaging, it is not typically used in the analysis of97
numerical simulations due to computational challenges: numerical simulations are usually98
Eulerian in nature, with data being defined at fixed spatial grid points. Previous approaches99
have used particle tracking methods, whereby synthetic passive particles are seeded in100
a numerical simulation and advected by the flow velocities, either during the simulation101
or afterwards using saved data. The scalar fields recorded at the particle locations can102
then be used to formulate Lagrangian averages (Nagai et al. 2015; Shakespeare & Hogg103
2017, 2018, 2019; Bachman et al. 2020). Various difficulties with this approach include104
the computational expense of advecting particles and the potential of particles to cluster in105
certain parts of the domain, making a domain-wide Lagrangian average subject to potentially106
inaccurate interpolations. A recent open-source Python package developed by Shakespeare107
et al. (2021) overcomes the latter of these difficulties by performing the particle tracking108
on offline simulation data and seeding particles at the midpoint of the interval of interest,109
from which they are tracked back and forth. This method has been successfully used to filter110
internal waves in a number of studies, but relies on large amounts of high spatial and temporal111
resolution simulation data being saved and processed (e.g. Shakespeare et al. 2021; Baker &112
Mashayek 2022; Tedesco et al. 2023; Jones et al. 2023).113

An alternative method for finding the Lagrangian mean was recently proposed by Kafiabad114
& Vanneste (2023, hereafter KV23), following on from a previous grid-based method for the115
same procedure (Kafiabad 2022). They showed that it is possible to define partial Lagrangian116
mean fields that lead to a set of partial differential equations (PDEs) that only depend on the117
current simulation time. These PDEs can be solved alongside the governing equations of the118
flow over the averaging interval, after which the final value of the partial Lagrangian means119
is equal to the full Lagrangian mean of interest. For each interval over which the Lagrangian120
mean equations are solved, only one instance of the full Lagrangian mean is computed, so121
the Lagrangian mean can either be found at a coarse temporal resolution, or multiple sets of122
the PDEs can be solved simultaneously to achieve a higher temporal resolution. This method123
allows the Lagrangian mean to be found on-the-fly, with no expensive data writing, storage124
or post-processing required. The Lagrangian mean equations can be solved with the same125
scheme as the governing equations of the flow.126

The Lagrangian mean found using the KV23 approach is the special case of an unweighted127
mean over a finite interval, often referred to as a ‘top-hat’ mean. However, in order to control128
the frequencies that are retained by the mean field, i.e. to apply a Lagrangian frequency filter,129
a weighted mean is needed. In this work, we extend the method of KV23 to one for a general130
convolutional weighted mean. This allows us to perform Lagrangian filtering on-the-fly in a131
numerical simulation without particle tracking. We present three strategies for this purpose132
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– two of which were previously presented by KV23, and a third, new strategy that avoids133
some issues associated with the other two.134

Once the Lagrangian mean fields are computed, it is possible to define the corresponding135
perturbation fields in a number of ways. We therefore also carefully present several different136
Lagrangian wave–mean decompositions and their properties. Whilst the motivation here is137
to enable identification of internal inertia-gravity waves, this method is flexible in that any138
intrinsic frequency criterion can be used to define the wave-like perturbations. Although we139
focus on geophysical flows, our method can be used for any multi-time-scale flows, such as140
those in astrophysical or biological fluids.141

This paper is structured as follows. In §2, we introduce the weighted Lagrangian mean,142
some of its important properties, and consider desirable forms of the weight function.143
In §3, we derive the on-the-fly method for solving for the Lagrangian mean. In §4 we144
introduce a rotating shallow water model that we use as a test-bed for the Lagrangian mean145
computation, and in §5 we show results of solving the Lagrangian mean equations alongside146
this model for the various strategies. Then, in §6 we return to a more theoretical look at how a147
wave–mean decomposition should be defined, before presenting results of these wave–mean148
decompositions in the shallow water model in §7. We discuss potential errors in §8, and our149
methods and results in §9.150

2. Lagrangian mean formulation151

2.1. Weighted averages and frequency filters152

We begin by defining a standard weighted time average at the reference time 𝑡∗ of some scalar153
quantity 𝑔(𝑡) as154

�̄�(𝑡∗) =
∫ ∞

−∞
𝑔(𝑠)𝐹 (𝑠, 𝑡∗) d𝑠 . (2.1)155

We design a weight function that acts as a frequency filter on 𝑔 at time 𝑡∗. Consider the156
Fourier Transform of 𝑔, given by157

�̂�(𝜔) =
∫ ∞

−∞
𝑔(𝑠)e−i𝜔𝑠 d𝑠 , (2.2)158

then the frequency filtered scalar �̄� at time 𝑡∗ is given by159

�̄�(𝑡∗) = 1
2𝜋

∫ ∞

−∞
�̂� (𝜔)�̂�(𝜔)ei𝜔𝑡∗ d𝜔 , (2.3)160

where �̂� (𝜔) weights certain frequencies – for example, when �̂� (𝜔) = 1 on [−𝜔𝑐, 𝜔𝑐] and161
is zero otherwise, �̄�(𝑡∗) is low-pass filtered with cut-off frequency 𝜔𝑐.162

Writing (2.3) in the form of (2.1) gives163

�̄�(𝑡∗) =
∫ ∞

−∞
𝑔(𝑠)𝐺 (𝑡∗ − 𝑠) d𝑠 , (2.4)164

where165

𝐺 (𝑡) = 1
2𝜋

∫ ∞

−∞
�̂� (𝜔)ei𝜔𝑡 d𝜔 , (2.5)166

thus using the convolutional weight function 𝐹 (𝑠, 𝑡∗) = 𝐺 (𝑡∗− 𝑠) in (2.1) gives the frequency167
filter of 𝑔 at time 𝑡∗. 𝐺 (𝑡) can also be described as an impulse response, and �̂� (𝜔) as the168
corresponding frequency response of the filter. If 𝐺LP describes a low-pass filter with cut-off169
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𝜔𝑐 described above, then170

𝐺LP(𝑡) =
sin(𝜔𝑐𝑡)

𝜋𝑡
, (2.6)171

and the top-hat mean over an interval of length 2𝑇 is given by172

𝐺TH(𝑡) = (𝐻 (𝑡 + 𝑇) − 𝐻 (𝑡 − 𝑇))/2𝑇 , (2.7)173

where 𝐻 (·) is the Heaviside step function. We hereafter consider convolutional weight174
functions of the form 𝐹 (𝑠, 𝑡∗) = 𝐺 (𝑡∗ − 𝑠).175

2.2. Lagrangian averaging176

If a time average is calculated at a fixed point in space, then it is an Eulerian time average.177
If it is instead calculated along the trajectory of a particle travelling with the fluid velocity178
𝒖(𝒙, 𝑡), it is a Lagrangian time average.179

We define a flow map 𝝋(𝒂, 𝑡), which gives the position of a particle labelled by 𝒂 at time 𝑡.180
The label 𝒂 could be taken to be the position of the particle at time 𝑡 = 0, so that 𝝋(𝒂, 0) = 𝒂,181
and in general, we think of 𝝋, 𝒂 ∈ R2 or R3. Following KV23, we then define the weighted182
Lagrangian mean flow map as183

¯̄𝝋(𝒂, 𝑡∗) =
∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠)𝝋(𝒂, 𝑠) d𝑠 , (2.8)184

where 𝑡∗ is the time to which the Lagrangian mean is assigned. Following Gilbert & Vanneste185
(2024) we use the double-bar notation to avoid confusion with the straightforward Eulerian186
average. We then define the weighted generalised Lagrangian mean of a scalar field 𝑓 (𝒙, 𝑡)187
by188

𝑓
L( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗) =

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) 𝑓 (𝝋(𝒂, 𝑠), 𝑠) d𝑠 . (2.9)189

For comparison, we also define the corresponding Eulerian mean190

𝑓
E(𝒙, 𝑡∗) =

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) 𝑓 (𝒙, 𝑠) d𝑠 . (2.10)191

2.3. Defining a valid weight function192

We require that the weight function 𝐺 (𝑡∗ − 𝑠) satisfies the normalisation condition193 ∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) d𝑠 = 1 . (2.11)194

From (2.8), this is equivalent to requiring that the mean position of a stationary particle (i.e.195
when flow velocity 𝒖 = 0 so that the flow map 𝝋 is independent of time) is its own position.196

Without this natural assumption, our methods for finding 𝑓
L

in a periodic domain break197
down (see discussion of suitable domains and boundary conditions in §3.6).198

Writing 𝐺 in terms of its Fourier transform �̂� (defined in (2.5)) shows that (2.11) is199
equivalent to �̂� (0) = 1. The filter must therefore include the zero frequency. The filters200
described in equations (2.6) and (2.7) satisfy this criterion, but a high pass filter, for example,201
could not be used to define a mean flow. However, we could define a weight function that202
removes some frequencies 𝜔 in a specified interval 0 < |𝜔1 | < |𝜔| < |𝜔2 | by setting:203

�̂� (𝜔) =
{

0, |𝜔1 | < |𝜔| < |𝜔2 |
1, otherwise .

(2.12)204
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We later show an example of this filter in figure 7.205

We would also like the weight function to be such that 𝑓
L

(defined in (2.9)) satisfies a206
property that we expect of a mean, namely that the mean is unchanged by reapplying the207
averaging operation:208

𝑓
L L

(𝒙, 𝑡∗) ?
= 𝑓

L(𝒙, 𝑡∗) . (2.13)209

Since the Lagrangian mean of a scalar depends on the flow with which it is advected, there is210
some ambiguity in the notation on the 𝐿𝐻𝑆 of equation (2.13). We formalise this statement211

in Appendix A, and note here that the Lagrangian mean of 𝑓
L

is taken with respect to the212
Lagrangian mean flow defined by the map ¯̄𝝋.213

Equation (2.13) is satisfied only when �̂� (𝜔) = 0 or 1, or some piece-wise combination of214
each. A proof of this is given in Appendix A. This is equivalent to requiring that �̂� represents215

a perfect band-pass filter. In this case, the Lagrangian filtered field 𝑓
L

behaves as we hope a216
‘mean’ field should, in that it contains no (Lagrangian) high frequencies. In practice, filters217
rarely exactly satisfy the condition (2.13). Perfect band-pass filters tend to suffer from spectral218
ringing at the cut-off frequency, so other imperfect filters such as the Butterworth filter are219
often used instead (Rama et al. 2022). Here, the wave frequency considered in the numerical220
model in §4 is not close to the cut-off frequency, so ringing is not an issue. We therefore221
only consider perfect band-pass filters so that the mean field is not expected to contain any222
wave signal. Using a 4th order Butterworth filter gives indistinguishable results in our case,223
although it does allow shorter averaging intervals (see discussion of figure 4), which makes224
it preferable in practice, even though (2.13) is not perfectly satisfied.225

We note here that there is no assumption of time-scale separation between the ‘slow’226
mean flow and the ‘fast’ motions to be filtered. The original formulation of GLM theory by227
Andrews & McIntyre (1978) defines the Lagrangian average in an abstract way to apply to228
ensemble averages. To apply it to temporal averages such as the one we compute requires an229
assumption that the mean flow is ‘frozen’ during the averaging operation (Bühler 2014), and230
this is explained further with an example illustrating the difference between the formulations231
in Appendix B.232

2.4. Lagrangian mean velocity233

By definition, the flow map 𝝋 satisfies234

𝒖(𝝋(𝒂, 𝑡), 𝑡) = 𝜕𝝋

𝜕𝑡
(𝒂, 𝑡) , (2.14)235

where 𝒖 is the fluid velocity. The Lagrangian mean velocity ¯̄𝒖 is then defined to be the236
velocity of a particle moving along a Lagrangian mean trajectory, that is,237

¯̄𝒖( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗) = 𝜕 ¯̄𝝋
𝜕𝑡∗

(𝒂, 𝑡∗) . (2.15)238

However, another velocity 𝒖L can be defined by taking the Lagrangian mean of each239
component of the velocity 𝒖 treated as scalars (see Gilbert & Vanneste (2018) and Gilbert240
& Vanneste (2024) for other, more geometric definitions of 𝒖L). The averaging operation is241
such that ¯̄𝒖 = 𝒖L for the class of convolutional weight functions considered here. This is a242
special case of the more general result243

¯̄𝐷 𝑓
L
= 𝐷 𝑓

L
, (2.16)244
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where245

𝐷 ≡ 𝜕

𝜕𝑡
+ 𝒖 · ∇ , (2.17)246

¯̄𝐷 ≡ 𝜕

𝜕𝑡∗
+ ¯̄𝒖 · ∇ . (2.18)247

This result is shown in Appendix C, with the result ¯̄𝒖 = 𝒖L found by considering 𝑓 (𝒙, 𝑡∗) = 𝒙.248
Equation (2.16) is one of the most powerful results of the Lagrangian formalism – it means249
that material conservation laws and scalar transport relations are inherited naturally by the250
corresponding Lagrangian means (Andrews & McIntyre 1978).251

We now formulate a PDE-based method for calculating these Lagrangian mean quantities,252
extending the method of KV23 to include a general convolutional weight function 𝐺 (𝑡∗ − 𝑠),253
which allows us to use a Lagrangian filter for wave–mean decomposition.254

3. Formulation of on-the-fly method255

KV23 developed a method for finding the top-hat Lagrangian mean 𝑓
L

of a scalar field 𝑓 ,256
as defined in (2.9) (with 𝐺 (𝑡) = (𝐻 (𝑡 + 𝑇) − 𝐻 (𝑡 − 𝑇))/2𝑇), by formulating equations for257
the ‘partial Lagrangian means’ and evolving them in a numerical simulation alongside the258
governing equations of the flow. Here, we re-derive this method for a weighted Lagrangian259
mean, although we have the specific application of a low-pass filter in mind.260

KV23 presented two strategies for finding 𝑓
L
. Strategy 1 solves first for an auxiliary mean261

function, before using a remapping to recover 𝑓
L
, whereas strategy 2 solves directly for 𝑓

L
.262

Both of these strategies have particular advantages and disadvantages, which we discuss263
further later. Here, we rederive these two strategies for a weighted mean, and present a new264
third strategy that circumvents some difficulties with strategies 1 and 2.265

3.1. Definition of full Lagrangian means266

We now approximate the average over an infinitely long interval in (2.8)-(2.9) by one over a267
finite interval [𝑡∗ −𝑇, 𝑡∗ +𝑇], which is centred on the time 𝑡∗ at which the average is defined.268
This need not be the case, but it is the natural choice for even weight functions 𝐺, which269
correspond to real frequency response functions �̂� (see (2.5)).270

The mean flow map is now defined by (c.f. (2.8))271

¯̄𝝋(𝒂, 𝑡∗) =
∫ 𝑡∗+𝑇

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠)𝝋(𝒂, 𝑠) d𝑠 , (3.1)272

where 𝐺 (𝑡∗ − 𝑠) satisfies the normalisation (2.11) over the interval [𝑡∗ − 𝑇, 𝑡∗ + 𝑇].273

We introduce some notation defining rearrangements of the mean scalar 𝑓
L

that depend274
on different spatial coordinates:275

𝑓
L( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗) = 𝑓 (𝝋(𝒂, 𝑡∗ +𝑇), 𝑡∗) = 𝑓 ∗(𝝋(𝒂, 𝑡∗), 𝑡∗) =

∫ 𝑡∗+𝑇

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) 𝑓 (𝝋(𝒂, 𝑠), 𝑠) d𝑠 .

(3.2)276

𝑓
L
, 𝑓 and 𝑓 ∗ all encode the Lagrangian mean of 𝑓 , but they use different independent277

variables to do so: 𝑓
L(𝒙, 𝑡∗) is the Lagrangian mean for the particle whose mean position278

is 𝒙, 𝑓 (𝒙, 𝑡∗) is the Lagrangian mean for the particle whose position at time 𝑡∗ + 𝑇 is 𝒙,279
and 𝑓 ∗(𝒙, 𝑡∗) is the Lagrangian mean for the particle whose position at time 𝑡∗ is 𝒙. The280
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Figure 1: Schematic of a particle trajectory (black) with label 𝒂 in the interval
[𝑡∗ − 𝑇, 𝑡∗ + 𝑇], with positions labelled by the flow map 𝝋(𝒂, 𝑡). The mean particle

trajectory on the same interval is shown in blue, with positions labelled by the mean flow
map ¯̄𝝋(𝒂, 𝑡∗). Red arrows indicate the maps 𝚵𝑖 ↦→ 𝑗 from position 𝑖 to position 𝑗 , where

position 1 is the trajectory endpoint 𝝋(𝒂, 𝑡∗ + 𝑇), position 2 is the trajectory mean
¯̄𝝋(𝒂, 𝑡∗), and position 3 is the trajectory midpoint 𝝋(𝒂, 𝑡∗).

three functions are rearrangements of each other, that is, related via composition with (not281
necessarily volume-preserving) maps.282

Despite simply being rearrangements of each other, each of the definitions in (3.2) will283

be useful to us. 𝑓
L

is the generalised Lagrangian mean that we are looking to find, and is284
the true Lagrangian mean in that it satisfies properties such as (2.13) and (2.16). 𝑓 and 𝑓 ∗285

are auxiliary fields that will help us to derive 𝑓
L

in two of our strategies, and we will also286
demonstrate that 𝑓 ∗ is useful in itself to extract the wave field. Hence, one may want to287

compute it in addition to 𝑓
L
.288

We also need to define the set of maps 𝚵 between each of the spatial independent variables289

that effect the rearrangements of 𝑓
L

in (3.2). For this purpose, the label ‘1’ refers to the290
trajectory endpoint position 𝝋(𝒂, 𝑡∗ + 𝑇), ‘2’ refers to the trajectory mean position ¯̄𝝋(𝒂, 𝑡∗),291
and ‘3’ refers to the trajectory midpoint position 𝝋(𝒂, 𝑡∗). We use this convention because292
strategy ‘𝑖’ directly finds the Lagrangian mean in (3.2) with spatial independent variable ‘𝑖’,293
for 𝑖 ∈ {1, 2, 3}. For example, strategy 1 solves directly for 𝑓 . We define the map 𝚵𝑖 ↦→ 𝑗 to294
map from the 𝑖 coordinate to the 𝑗 coordinate, such that 𝚵𝑖 ↦→ 𝑗 is the identity map for 𝑖 = 𝑗 ,295 (
𝚵𝑖 ↦→ 𝑗

)−1
= 𝚵 𝑗 ↦→𝑖 and296

𝚵1↦→2(𝝋(𝒂, 𝑡∗ + 𝑇), 𝑡∗) = ¯̄𝝋(𝒂, 𝑡∗) , (3.3)297

𝚵1↦→3(𝝋(𝒂, 𝑡∗ + 𝑇), 𝑡∗) = 𝝋(𝒂, 𝑡∗) , (3.4)298

𝚵3↦→2(𝝋(𝒂, 𝑡∗), 𝑡∗) = ¯̄𝝋(𝒂, 𝑡∗) . (3.5)299

These maps are illustrated in the schematic in figure 1.300
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3.2. Definition of partial Lagrangian means301

As in KV23, we now define a corresponding set of ‘partial’ Lagrangian mean fields, that is,302
fields obtained by carrying out the averaging integration from 𝑡∗ − 𝑇 to some 𝑡 < 𝑡∗ + 𝑇 . By303
finding PDEs for these partial fields and evolving them over the averaging interval alongside304
the governing equations for the flow, the full Lagrangian mean fields in §3.1 are obtained305
when 𝑡 = 𝑡∗ + 𝑇 . The subscript 𝑝 always denotes a ‘partial’ field, and these fields evolve306
with time 𝑡, while the time 𝑡∗ at which the Lagrangian mean is assigned is a fixed parameter.307
In the definitions of the partial fields, we drop the dependence on 𝑡∗ for readability, since308
everything in this section refers to one fixed averaging time 𝑡∗.309

First, we define a partial mean flow map to correspond to (3.1), namely310

¯̄𝝋𝑝 (𝒂, 𝑡) =
∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠)𝝋(𝒂, 𝑠) d𝑠 + 𝝋(𝒂, 𝑡)

(
1 −

∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) d𝑠

)
, (3.6)311

so that ¯̄𝝋𝑝 (𝒂, 𝑡∗ + 𝑇) = ¯̄𝝋(𝒂, 𝑡∗). This particular form of ¯̄𝝋𝑝 (in particular the second term312
which vanishes when 𝑡 = 𝑡∗ + 𝑇) is needed for a similar reason to that discussed in §2.3,313
namely that the partial mean position of a stationary particle should be the position itself, so314
that the image of the partial mean flow map is the same as that of the flow map itself.315

We then define the partial equivalents of (3.2):316

𝑓
L
𝑝 ( ¯̄𝝋𝑝 (𝒂, 𝑡), 𝑡) = 𝑓𝑝 (𝝋(𝒂, 𝑡), 𝑡) = 𝑓 ∗𝑝 (𝝋∗

𝑝 (𝒂, 𝑡), 𝑡) =
∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗−𝑠) 𝑓 (𝝋(𝒂, 𝑠), 𝑠) d𝑠 , (3.7)317

where a second term corresponding to that used in (3.6) is not necessary here and is omitted318
for convenience. The new partial coordinate corresponding to 𝝋(𝒂, 𝑡∗) is 𝝋∗

𝑝 (𝒂, 𝑡), given by319

𝝋∗
𝑝 (𝒂, 𝑡) =

{
𝝋(𝒂, 𝑡), 𝑡 < 𝑡∗

𝝋(𝒂, 𝑡∗), 𝑡 ⩾ 𝑡∗ .
(3.8)320

This form of 𝝋∗
𝑝 is necessary because using 𝝋(𝒂, 𝑡∗) as the coordinate from the beginning321

would violate causality. Other definitions, such as 𝝋∗
𝑝 (𝒂, 𝑡) = 𝝋(𝒂, 𝑡/2), although resulting322

in the desired full mean definition 𝑓 ∗ (see (3.2)), would not allow the subsequent evolution323
equations to depend only on fields at the current time.324

The definitions in (3.7) ensure that the full Lagrangian means defined in (3.2) are recovered325
by setting 𝑡 = 𝑡∗ + 𝑇 in (3.7).326

We also define partial mean equivalents of (3.3)-(3.5) (where as before,
(
𝚵𝑖 ↦→ 𝑗

𝑝

)−1
= 𝚵 𝑗 ↦→𝑖

𝑝 )327

𝚵1↦→2
𝑝 (𝝋(𝒂, 𝑡), 𝑡) = ¯̄𝝋𝑝 (𝒂, 𝑡) , (3.9)328

𝚵1↦→3
𝑝 (𝝋(𝒂, 𝑡), 𝑡) = 𝝋∗

𝑝 (𝒂, 𝑡) , (3.10)329

𝚵2↦→3
𝑝 ( ¯̄𝝋𝑝 (𝒂, 𝑡), 𝑡) = 𝝋∗

𝑝 (𝒂, 𝑡) . (3.11)330

We now have all of the notation necessary to derive three separate strategies for finding331

𝑓
L

and/or 𝑓 ∗, which may be sufficient (see §6). We briefly summarise each strategy here.332
In table 1, we summarise the dependent fields of each PDE to be solved for the three strategies.333

334

(i) Strategy 1: Solve for 𝑓 (𝒙, 𝑡∗) and the map 𝚵1↦→2(𝒙, 𝑡∗), then find 𝑓
L(𝒙, 𝑡∗) =335

𝑓 ((𝚵1↦→2)−1(𝒙, 𝑡∗), 𝑡∗) by a final interpolation step. The variable 𝑓 ∗(𝒙, 𝑡∗) = 𝑓 ((𝚵1↦→3)−1(𝒙, 𝑡∗), 𝑡∗)336
can also be found by solving for 𝚵1 ↦→3(𝒙, 𝑡∗).337

338
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PDE to solve Strategy 1 Strategy 2 Strategy 3

Scalar equation 𝑓𝑝 𝑓
L
𝑝 𝑓 ∗𝑝

Auxiliary map for scalar equation — 𝚵2↦→1
𝑝 𝚵3↦→1

𝑝

Extra map for interpolation to 𝑓
L

𝚵1 ↦→2
𝑝 — 𝚵3 ↦→2

𝑝

Extra map for interpolation to 𝑓 ∗ 𝚵1 ↦→3
𝑝 𝚵2↦→3

𝑝 —

Table 1: Fields to be solved for in each of the three strategies presented.

(ii) Strategy 2: Solve directly for 𝑓
L(𝒙, 𝑡∗), which requires also solving for the map339

𝚵2↦→1(𝒙, 𝑡∗). The variable 𝑓 ∗(𝒙, 𝑡∗) = 𝑓
L((𝚵2↦→3)−1(𝒙, 𝑡∗), 𝑡∗) can also be found by solving340

for 𝚵2↦→3(𝒙, 𝑡∗).341
342

(iii) Strategy 3: Solve directly for 𝑓 ∗(𝒙, 𝑡∗), which requires also solving for the map343

𝚵3↦→1(𝒙, 𝑡∗). The variable 𝑓
L(𝒙, 𝑡∗) = 𝑓 ∗((𝚵3 ↦→2)−1(𝒙, 𝑡∗), 𝑡∗) can be found by solving for344

𝚵3↦→2(𝒙, 𝑡∗).345
346

3.3. Strategy 1: Solve at partial trajectory endpoint 𝝋(𝒂, 𝑡)347

The first strategy consists of solving for 𝑓 (𝒙, 𝑡∗), the Lagrangian mean along the trajectory of348
a particle whose position 𝒙 = 𝝋(𝒂, 𝑡∗ + 𝑇) is at the trajectory endpoint (as defined in (3.2)).349

Taking the time derivative of (3.7) at fixed 𝒂, and using the dummy variable 𝒙 = 𝝋(𝒂, 𝑡),350
we find351

𝜕 𝑓𝑝

𝜕𝑡
(𝒙, 𝑡) + 𝒖(𝒙, 𝑡) · ∇ 𝑓𝑝 (𝒙, 𝑡) = 𝑓 (𝒙, 𝑡)𝐺 (𝑡∗ − 𝑡) . (3.12)352

where we have used 𝒖(𝝋(𝒂, 𝑡), 𝑡) = 𝜕𝝋
𝜕𝑡
(𝒂, 𝑡) by definition of the flow map.353

Equation (3.12), along with this initial condition 𝑓𝑝 (𝒙, 0) = 0 (see (3.7)) can be solved354
alongside the governing equations to find 𝑓 (𝒙, 𝑡∗) = 𝑓𝑝 (𝒙, 𝑡∗ + 𝑇). However, we then need355

to map to the ¯̄𝝋 coordinates to find 𝑓
L
. We therefore differentiate the definition of 𝚵1↦→2

𝑝 in356

(3.9), and use the definition (3.6) of ¯̄𝝋𝑝 (𝒂, 𝑡) (setting 𝒙 = 𝝋(𝒂, 𝑡) as before) to give357

𝜕𝝃1↦→2
𝑝

𝜕𝑡
(𝒙, 𝑡) + 𝒖(𝒙, 𝑡) · ∇𝝃1↦→2

𝑝 (𝒙, 𝑡) = −𝒖(𝒙, 𝑡)
∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) d𝑠 , (3.13)358

where the perturbation map 𝝃1↦→2
𝑝 is defined by359

𝝃1↦→2
𝑝 (𝒙, 𝑡) = 𝚵1↦→2

𝑝 (𝒙, 𝑡) − 𝒙 . (3.14)360

Initial conditions for (3.13) are given by 𝝃1↦→2
𝑝 (𝒙, 0) = 0. Evolving (3.13) alongside361

(3.12) and the governing equations, we can then use 𝚵1↦→2(𝒙, 𝑡∗) = 𝚵1 ↦→2
𝑝 (𝒙, 𝑡∗ + 𝑇) =362

𝝃1↦→2
𝑝 (𝒙, 𝑡∗ + 𝑇) + 𝒙 to remap 𝑓 to 𝑓

L
, so that, using (3.2) and writing in terms of a dummy363

variable 𝒙:364

𝑓
L(𝒙, 𝑡∗) = 𝑓 ((𝚵1↦→2)−1(𝒙, 𝑡∗), 𝑡∗) . (3.15)365

If we would also like to know the mean field 𝑓 ∗ defined at the flow trajectory midpoint, we366
can solve for 𝚵1↦→3(𝒙, 𝑡∗) by differentiating the definition of 𝚵1↦→3

𝑝 (𝒙, 𝑡) in (3.10) and using367

Rapids articles must not exceed this page length
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(3.8) to find368

𝜕𝝃1↦→3
𝑝

𝜕𝑡
(𝒙, 𝑡) + 𝒖(𝒙, 𝑡) · ∇𝝃1↦→3

𝑝 (𝒙, 𝑡) = −𝒖(𝒙, 𝑡)𝐻 (𝑡 − 𝑡∗) , (3.16)369

where 𝐻 (·) is the Heaviside step function, and the perturbation map 𝝃1 ↦→3
𝑝 is defined by370

𝝃1↦→3
𝑝 (𝒙, 𝑡) = 𝚵1↦→3

𝑝 (𝒙, 𝑡) − 𝒙 . (3.17)371

After (3.16) has been evolved to time 𝑡∗ +𝑇 , 𝑓 ∗(𝒙, 𝑡∗) can then be found using 𝚵1↦→3(𝒙, 𝑡∗) =372
𝚵1↦→3

𝑝 (𝒙, 𝑡∗ + 𝑇) = 𝝃1↦→3
𝑝 (𝒙, 𝑡∗ + 𝑇) + 𝒙 by interpolation from373

𝑓 ∗(𝒙, 𝑡∗) = 𝑓 ((𝚵1↦→3)−1(𝒙, 𝑡∗), 𝑡∗) . (3.18)374

Strategy 1 is the simplest and cheapest strategy, since the evolution equations (3.12), (3.13)375
and (3.16) do not involve interpolation at each time step (as will be required by strategies 2376
and 3). However, in a complex flow with time-scales similar to or smaller than the averaging377
interval, the maps𝚵12 and𝚵13 can be far from the identity map, making the final interpolation378
step inaccurate. This will be discussed further in §8, and a case where this interpolation is379
too complex will be shown in figure 4. For this reason, KV23 developed a strategy 2, which380
avoids the need for this interpolation step.381

3.4. Strategy 2: Solve at trajectory partial mean ¯̄𝝋𝑝 (𝒂, 𝑡)382

Following KV23, in strategy 2 we solve directly for 𝑓
L(𝒙, 𝑡∗), the Lagrangian mean along383

the trajectory of a particle whose position 𝒙 = ¯̄𝝋(𝒂, 𝑡∗) is at the trajectory mean position (as384
defined in (3.2)).385

Taking the derivative with respect to 𝑡 of (3.6), we define386

�̄�𝑝 ( ¯̄𝝋𝑝 (𝒂, 𝑡), 𝑡) ≡
𝜕 ¯̄𝝋𝑝

𝜕𝑡
= 𝒖(𝝋(𝒂, 𝑡), 𝑡)

(
1 −

∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) d𝑠

)
. (3.19)387

We note that �̄�𝑝 is not related to the Lagrangian mean velocity ¯̄𝒖 defined in §2.4. Here,388
�̄�𝑝 is found by taking the time derivative of ¯̄𝝋𝑝 with respect to 𝑡, whereas the Lagrangian389
mean velocity is the derivative of ¯̄𝝋 with respect to 𝑡∗.390

Then, differentiating the definition of 𝚵2 ↦→1
𝑝 in (3.9) and letting 𝒙 = ¯̄𝝋𝑝 (𝒂, 𝑡) gives391

𝜕𝝃2↦→1
𝑝

𝜕𝑡
(𝒙, 𝑡) + �̄�𝑝 (𝒙, 𝑡) · ∇𝝃2↦→1

𝑝 (𝒙, 𝑡) = 𝒖(𝒙 + 𝝃2↦→1
𝑝 (𝒙, 𝑡), 𝑡)

∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) d𝑠 , (3.20)392

where the perturbation map 𝝃2↦→1
𝑝 is defined by393

𝝃2↦→1
𝑝 (𝒙, 𝑡) = 𝚵2↦→1

𝑝 (𝒙, 𝑡) − 𝒙 , (3.21)394

with initial condition 𝝃2↦→1
𝑝 (𝒙, 0) = 0, and from (3.19),395

�̄�𝑝 (𝒙, 𝑡) = 𝒖(𝒙 + 𝝃2↦→1
𝑝 (𝒙, 𝑡), 𝑡)

(
1 −

∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) d𝑠

)
. (3.22)396

The evolution of the partial Lagrangian mean scalar 𝑓
L
𝑝 can be found by taking the time397

derivative of (3.7), giving398

𝜕 𝑓
L
𝑝

𝜕𝑡
(𝒙, 𝑡) + �̄�𝑝 (𝒙, 𝑡) · ∇ 𝑓

L
𝑝 (𝒙, 𝑡) = 𝑓 (𝒙 + 𝝃2↦→1

𝑝 (𝒙, 𝑡), 𝑡)𝐺 (𝑡∗ − 𝑡) , (3.23)399
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with initial condition 𝑓
L
𝑝 (𝒙, 0) = 0.400

Solving the system of equations (3.20) - (3.23) then directly gives the Lagrangian mean401

𝑓
L
. If desired, we can also find 𝑓 ∗(𝒙, 𝑡∗) by solving for the map 𝚵2↦→3(𝒙, 𝑡∗). Differentiating402

the definition of the map 𝚵2↦→3
𝑝 in (3.11), and setting 𝒙 = ¯̄𝝋𝑝 (𝒂, 𝑡) leads to403

𝜕𝝃2↦→3
𝑝

𝜕𝑡
(𝒙, 𝑡)+�̄�𝑝 (𝒙, 𝑡)·∇𝝃2↦→3

𝑝 (𝒙, 𝑡) = 𝒖(𝒙+𝝃2↦→1
𝑝 (𝒙, 𝑡), 𝑡)

(∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) d𝑠 − 𝐻 (𝑡 − 𝑡∗)

)
,

(3.24)404
where the perturbation map 𝝃2↦→3

𝑝 is defined by405

𝝃2↦→3
𝑝 (𝒙, 𝑡) = 𝚵2↦→3

𝑝 (𝒙, 𝑡) − 𝒙 . (3.25)406

Then, 𝑓 ∗(𝒙, 𝑡∗) can be found by interpolation according to407

𝑓 ∗(𝒙, 𝑡∗) = 𝑓
L((𝚵2↦→3)−1(𝒙, 𝑡∗), 𝑡∗) . (3.26)408

Strategy 2 is intended to eliminate the problems with the final interpolation step in strategy409
1 by solving directly at the partial Lagrangian mean position. However, this comes at the410
expense of a more complicated 𝑅𝐻𝑆 in the evolution equations (3.23), (3.20), and (3.24),411
which require interpolation at each time step.412

A key disadvantage of strategy 2 pertains to the boundaries of the fluid domain. Since413
Lagrangian variables are referenced to the trajectory mean position, the equations are posed414
on a moving domain that will not in general coincide with the fluid domain, making boundary415
conditions non-trivial – this is discussed further in §3.6. We therefore now derive a third416
strategy that enables Lagrangian filtering in more complex and realistic domains.417

3.5. Strategy 3: Solve at trajectory midpoint 𝝋∗
𝑝 (𝒂, 𝑡)418

We solve directly for 𝑓 ∗(𝒙, 𝑡∗), the Lagrangian mean along the trajectory of a particle whose419
position 𝒙 = 𝝋(𝒂, 𝑡∗) is at the trajectory midpoint (as defined in (3.2)). For this, we need to420

solve for the map 𝚵3↦→1, and also for the map 𝚵3↦→2 if we also want to find 𝑓
L(𝒙, 𝑡∗). The421

derivation is similar to that for strategies 1 and 2, although the first and second halves of the422
interval must be considered separately. A full derivation is given in Appendix D.423

Strategy 3 consists of solving (from (D 1) and (D 6))424

𝜕 𝑓 ∗𝑝
𝜕𝑡

(𝒙, 𝑡) = 𝐺 (𝑡∗ − 𝑡) 𝑓 (𝒙 + 𝝃3↦→1
𝑝 (𝒙, 𝑡), 𝑡) − 𝐻 (𝑡∗ − 𝑡)𝒖(𝒙, 𝑡) · ∇ 𝑓 ∗𝑝 (𝒙, 𝑡) , (3.27)425

with initial conditions 𝑓 ∗𝑝 (𝒙, 0) = 0, along with (from (D 3) and (D 8))426

𝜕𝝃3↦→1
𝑝

𝜕𝑡
(𝒙, 𝑡) = 𝐻 (𝑡 − 𝑡∗)𝒖(𝒙 + 𝝃3↦→1

𝑝 (𝒙, 𝑡), 𝑡) , (3.28)427

with initial conditions 𝝃3↦→1
𝑝 (𝒙, 0) = 0. If 𝑓

L(𝒙, 𝑡∗) is required, then we also solve (from (D 5)428
and (D 10))430

𝜕𝝃3 ↦→2
𝑝

𝜕𝑡
(𝒙, 𝑡) = 𝒖(𝒙 + 𝝃3↦→1

𝑝 (𝒙, 𝑡), 𝑡)
(
𝐻 (𝑡 − 𝑡∗) −

∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) d𝑠

)
− 𝐻 (𝑡∗ − 𝑡)𝒖(𝒙, 𝑡) · ∇𝝃3↦→2

𝑝 (𝒙, 𝑡) ,
(3.29)431

with initial conditions 𝝃3↦→2
𝑝 (𝒙, 0) = 0. Then, 𝑓

L(𝒙, 𝑡∗) can be found using 𝚵3↦→2(𝒙, 𝑡∗) =432
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𝚵3↦→2
𝑝 (𝒙, 𝑡∗ + 𝑇) = 𝝃3↦→2

𝑝 (𝒙, 𝑡∗ + 𝑇) + 𝒙 from433

𝑓
L(𝒙, 𝑡∗) = 𝑓 ∗((𝚵3↦→2)−1(𝒙, 𝑡∗), 𝑡∗) . (3.30)434

Like strategy 1, strategy 3 requires a final interpolation step if 𝑓
L

is required (rather than 𝑓 ∗).435
However, this final interpolation, performed using 𝚵3↦→2, is likely to be much more accurate436
than that in strategy 1, since the trajectory mean and midpoint positions differ only by the437
wave perturbation (see figure 1). This will be demonstrated in figure 4.438

3.6. Boundary conditions439

In this study, we consider the simplest case of a doubly periodic domain. This is simple to440
implement as the Lagrangian mean equations for each strategy are constructed so that periodic441
state fields of the simulation lead to periodic Lagrangian mean fields (the normalisation442
condition (2.11) is essential for this to be the case). However, some of the equations can also443
be solved in more complex domains.444

Any fluid in a domain with open (non-periodic) boundaries will contain trajectories that exit445
the domain, so all definitions of Lagrangian means for these trajectories will be undefined and446
Lagrangian mean fields cannot be calculated over the full domain. However, the equations of447
strategies 1 and 3 ((3.12), (3.13), (3.16), and (3.27) - (3.29)) can be straightforwardly solved448
in any domain with fixed boundaries. Each of the equations for Lagrangian fields in these449
strategies contains an advective derivative term 𝒖 ·∇, indicating that a boundary condition is450
needed. However, in a fixed bounded domain with normal 𝒏, the velocity satisfies 𝒖 · 𝒏 = 0,451
so the normal part of the advective term vanishes at the boundary and no boundary conditions452
on the Lagrangian fields are necessary. After having solved for 𝑓 (strategy 1) or 𝑓 ∗ (strategy453

3), the final interpolation can then be carried out to find 𝑓
L
, although there is no guarantee454

that 𝑓
L

can be defined at every point in the domain (i.e. for a domain D and some y ∈ D,455
there may not exist 𝒙 ∈ D such that 𝚵3↦→2(𝒙, 𝑡) = y).456

In contrast, strategy 2 cannot easily be used in fixed bounded domains. Since the Lagrangian457
fields are defined on the image of the partial mean flow map ¯̄𝝋𝑝, the PDEs are posed on a458
domain with moving boundaries, leading in general to a free boundary problem. There is459
no guarantee that the Lagrangian mean position itself lies in the fluid domain (unless it is460
convex), or that a given location in the fluid domain is the Lagrangian mean position of some461

trajectory, so 𝑓
L

may not be defined everywhere.462
Strategy 2 can however be straightforwardly used in domains that have at most one non-463

periodic dimension, along which the boundaries must align with a constant coordinate464
surface in that dimension (i.e. one set of straight and parallel boundaries in Euclidean space).465
In this case, the image of the mean flow map coincides with the fluid domain. Boundary466
conditions are not needed, since trajectories stay on the boundary and thus 𝒖(𝒙, 𝑡) · 𝒏 = 0 ⇒467
𝒖(𝒙 + 𝝃2↦→1

𝑝 , 𝑡) · 𝒏 = 0 ⇒ 𝒖𝑝 (𝒙, 𝑡) · 𝒏 = 0.468

4. Numerical model469

We now demonstrate our filtering approach using a single layer rotating shallow water system,470
which permits both geostrophic turbulence and Poincaré waves.471

Similarly to KV23, we use the rotating shallow water equations in a doubly periodic472
domain. However, in order to have more flexibility over the chosen wavenumbers of Poincaré473
waves, we use the modified shallow water (MSW) equations introduced by Bühler (1998).474
These equations were developed for the very purpose of providing a simple test-bed for475
wave–mean decompositions, without the added complication of steepening Poincaré waves476
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that occurs in the regular shallow water equations (Bühler 1998). The MSW equations behave477
similarly to the shallow water equations, and the equations are identical when linearised478
about a state of rest. In our case, we want a flow that contains a slowly varying ‘mean’479
component alongside a wave field, and are agnostic to the physicality of the flow. We work480
with non-dimensional quantities – see KV23 for details of the non-dimensionalisation. The481
flow equations are482

𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇𝒖 + 1

𝑅𝑜
𝒛 × 𝒖 = − 1

𝐹𝑟2 F (ℎ)∇ℎ , (4.1)483

𝜕ℎ

𝜕𝑡
+ ∇ · (𝒖ℎ) = 0 , (4.2)484

where 𝒖 = (𝑢, 𝑣, 0) is the velocity, ℎ(𝑥, 𝑦) is the height, and motion is on an 𝑥, 𝑦 plane485
perpendicular to the vertical unit vector ẑ. F (ℎ) = 1 for standard shallow water, and486

F (ℎ) = 1
ℎ3 (4.3)487

for MSW. The non-dimensional parameters are the Froude and Rossby numbers 𝐹𝑟 and 𝑅𝑜,488
where 𝐹𝑟 is the non-dimensional inverse phase speed of linear gravity waves unaffected489
by rotation, and 𝑅𝑜 represents the ratio of inertial to Coriolis forces. Throughout, we take490
𝐹𝑟 = 0.3 and 𝑅𝑜 = 0.4.491

The flow is initialised with the output of an incompressible two-dimensional Navier–Stokes492
simulation in a fully-developed turbulent state, with height ℎ set to be initially in geostrophic493
balance (as in KV23)494

1
𝑅𝑜

𝒛 × 𝒖 = − 1
𝐹𝑟2 ∇ℎ , (4.4)495

and is allowed to evolve freely. The non-dimensionalisation of the height is such that ℎ = 1+𝜂,496
where the height perturbation 𝜂 = 0 for a flow at rest. For 𝜂 ≪ 1, the MSW term in (4.3)497
therefore scales as F (ℎ) = 1 + 𝑂 (𝜂), and MSW approximates standard shallow water. For498
a flow in geostrophic balance, 𝜂 ∼ 𝐹𝑟2/𝑅𝑜 (see (4.4)), so 𝐹𝑟2/𝑅𝑜 ≪ 1 is the condition499
for such a geostrophic flow to behave similarly to a standard shallow water flow. Here,500
𝐹𝑟2/𝑅𝑜 = 0.225, and we find that this is sufficient to prevent any spurious behaviour from501
the shallow water modification.502

We also superimpose a linear Poincaré wave on this initial condition and allow it to503
evolve alongside and interact with the geostrophic turbulence. The linearisation of the MSW504
equations (4.1) -(4.2) is identical to the original shallow water system. Linear wave solutions505
have frequency 𝜔 satisfying the dispersion relation506

𝜔2 =
1

𝑅𝑜2 + |𝒌 |2
𝐹𝑟2 , (4.5)507

where 𝒌 = (𝑘, 𝑙) is the wavenumber. The height perturbation 𝜂 of the waves scales as 𝐴𝑅𝑜,508
where 𝐴 is the maximum amplitude of the vorticity of the initialised wave. We take 𝐴 = 0.5,509
so that 𝐴𝑅𝑜 = 0.2, and the waves are also sufficiently linear to not be obviously affected by510
the MSW term (4.3), aside from their lack of nonlinear steepening as intended. The mode-1511
(|k| = 1) wave has frequency 𝜔 = 4.17.512

Starting from this initial condition, we evolve the MSW equations alongside the Lagrangian513
mean equations using a pseudo-spectral solver as in KV23, with a fourth order Runge Kutta514
scheme for the advective terms (Baker et al. 2024). We use a non-dimensional domain size515
of 2𝜋 × 2𝜋, with 256 gridpoints in the 𝑥 and 𝑦 directions. A hyperviscous (Laplacian to the516
power four) term is added to the momentum equation (4.1) to remove energy at small scales.517
A hyperviscous term can also be added to the Lagrangian mean equations, which is found518
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to be necessary for numerical stability when integrating strategy 1 over long time intervals.519
However, this is not necessary and is found to introduce error in the resulting Lagrangian520
mean for strategies 2 and 3, where the forcing terms on the 𝑅𝐻𝑆 of the scalar equations521
(3.23) and (3.27) seem to stabilise the simulations, so the Lagrangian mean equations of522
strategies 2 and 3 are run without any viscous terms.523

We implement each of strategies 1, 2, and 3, but show results from only strategies 1 and524
3, since the results of strategies 2 and 3 are visually identical (although their difference is525
quantified in §5), but strategy 3 is faster (see Appendix E). Unless otherwise stated, the526
equations are run using strategy 3 for an averaging period of 2𝑇 = 40, over which time the527
mean and wave components of the flow both evolve. The weight function 𝐺 is truncated to528
this finite interval, and renormalised to ensure that (2.11) holds exactly over the interval. In529
the case of a low-pass with weight function given by (2.6),530 ∫ 𝑡∗+𝑇

𝑡∗−𝑇
𝐺LP(𝑡∗ − 𝑠) d𝑠 → 1 as 𝜔𝑐𝑇 → ∞ , (4.6)531

so when 𝜔𝑐𝑇 is sufficiently large, the normalisation requirement still approximately holds.532
Unless otherwise stated, we use a low-pass cut-off frequency of 𝜔𝑐 = 2, so that 𝜔𝑐𝑇 = 40,533

and
∫ 𝑡∗+𝑇
𝑡∗−𝑇 𝐺LP(𝑡∗ − 𝑠) d𝑠 = 1.01. Appendix F shows the impact of changing 𝑇 .534

The scalar field to be averaged is the relative vorticity535

𝜁 =
𝜕𝑣

𝜕𝑥
− 𝜕𝑢

𝜕𝑦
. (4.7)536

First, we show results for the Lagrangian mean of the vorticity and compare the different537
strategies. We then explain the various ways that the flow can be decomposed into wave and538
mean components, before showing results for these decompositions.539

5. Results: Lagrangian mean540

Figure 2a shows the instantaneous vorticity at the midpoint of the averaging interval for541
comparison to various means. Whilst there is a high amplitude mode-1 wave present in the542
instantaneous vorticity, this wave is removed by the averaging procedures in figures 2b, 2c,543
2e, and 2f.544

Figures 2b and 2c show the Lagrangian and Eulerian low-pass means of vorticity. The545
Lagrangian low-pass retains more of the intensity of the vortices than the Eulerian low-pass,546
since the effect of the large amplitude wave displacement on the background turbulence leads547
to a blurring of the vortices in the Eulerian low-pass. This low-pass is calculated over an548
interval of 40 time units (𝑇 = 20), and the corresponding weight function 𝐺 (𝑡) is shown in549
figure 2d. The root-mean-squared difference between the Lagrangian mean vorticity in figure550
2b when calculated with strategies 2 and 3 is 0.003, with a maximum difference of 0.03.551

Also shown in figure 2d is 𝐺 (𝑡) for a top-hat mean with a comparable averaging time-scale552
of 𝑇 = 2. Figures 2e and 2f show the corresponding Lagrangian and Eulerian top-hat means553
at the same value of 𝑡∗ as for the low-pass. Whilst there are not qualitative differences between554
the top-hat and low-pass mean vorticity, there are differences that are evident when the fields555
are viewed as a time series.556

Figure 3 shows the same fields as figure 2 over a time series in 𝑡∗. We note here that figure557
3 is not showing the evolution in 𝑡 of the partial Lagrangian mean fields described in §3.558
Instead, for each value of 𝑡∗, a set of Lagrangian mean equations are solved over the interval559
[𝑡∗−𝑇, 𝑡∗+𝑇], and the values of the full Lagrangian means (referenced to time 𝑡∗) are shown.560

Whilst the oscillations at the wave frequency are removed by the Lagrangian low-pass in561
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Figure 2: Shallow water relative vorticity for a simulation over 40 time units (𝑇 = 20). The
mode-1 wave frequency is 𝜔 = 4.17, and the low-pass filters use a cut-off frequency of
𝜔𝑐 = 2. a) Instantaneous vorticity at the interval midpoint 𝑡∗ = 20. b) Lagrangian and c)

Eulerian low-pass at 𝑡∗ = 20. e) Lagrangian and f) Eulerian top-hat mean at 𝑡∗ = 20,
computed over the interval [18, 22], i.e. 𝑇 = 2. d) 𝐺 (𝑡) for the low-pass and top-hat

means, showing that 𝑇 = 2 is an appropriate averaging interval for the top-hat to compare
it to the low-pass. The directory including the Jupyter notebook that generated this figure

can be accessed at https://cocalc.com/share/public paths/
bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-2.

figure 3b, they are still evident in the top-hat mean shown in figure 3e. This is because the562
top-hat mean is less selective in the frequencies that are filtered. In this simple test case, we563
could have chosen the averaging period of the top-hat to exactly be the period of the wave564
to better remove this wave signal. However, in the general case of a continuous spectrum of565
waves, the top-hat mean would not be able to perfectly remove all waves with a given cut-off566
frequency.567

The Eulerian low-pass mean in figure 3c is more effective in removing the wave oscillations568
than the Lagrangian top-hat, but, as in figure 2c, the resulting mean flow is blurred. The569
Eulerian top-hat in figure 3 suffers from both blurring and residual wave signal. Hereafter,570
we focus on the low-pass filter, as it gives more control over the frequencies to remove, and571
consider the relative merits of strategies 1 and 3.572

Figure 4a shows the direct output 𝜁 of strategy 1, and figure 4d the direct output 𝜁∗ of573

strategy 3 (which are rearrangements of each other). To find 𝜁
L, these fields are remapped574

to the trajectory mean coordinate, using 𝚵1↦→2 for strategy 1 and 𝚵3↦→2 for strategy 3. The 𝑦575

components of these maps are shown in figures 4c and 4f respectively, and the resulting 𝜁
L

576
in figures 4b and 4e. The map 𝚵1↦→2 is complicated as it represents the motion of the flow577

between the trajectory mean and end positions, and the resulting 𝜁
L is poorly interpolated.578

However, 𝚵3↦→2 differs from the identity only by the wave perturbation, and therefore results579

https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-2
https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-2
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Figure 3: As in figure 2, showing the time (𝑡∗) evolution of each field at 𝑦 = 2.8. The
directory including the Jupyter notebook that generated this figure can be accessed at

https://cocalc.com/share/public paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/
Figure-3.

in a clean interpolation to 𝜁
L. Therefore, strategy 3 is preferred over strategy 1 when the580

mean flow varies significantly over the averaging interval, although in a flow with a more581
complex ‘wave’ component, the final mapping of strategy 3 may still be too complicated.582
However, over a shorter averaging interval, where the interpolating map shown in figure 4c583
is simpler, strategy 1 may be more accurate than strategy 3, since strategy 3 can accumulate584
interpolation errors at each time step. We discuss this further in §8. The complexity of the585
strategy 1 mapping in figure 4c is also partly due to the long averaging interval used – the586
use of a filter that is more localised in time than the strict low-pass (such as a Butterworth587
or Gaussian filter) would allow a shorter averaging interval, and correspondingly a less588
complex final interpolation in strategy 1 (and also in the forcing terms of the strategy 2 and589
3 equations).590

Having found the Lagrangian mean of a flow, we now consider how to define the wave-like591
component of the flow.592

6. Lagrangian wave formulation593

There are several ways to define the wave-like component of the flow. The first (and perhaps594
most common) is to define waves as high frequency perturbations at a fixed point. If the595

Eulerian mean of some scalar 𝑓 is given by 𝑓
E(𝒙, 𝑡), then the Eulerian wave perturbation is596

defined as597

𝑓
w
E (𝒙, 𝑡) = 𝑓 (𝒙, 𝑡) − 𝑓

E(𝒙, 𝑡) , (6.1)598

https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-3
https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-3
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Figure 4: Comparison of calculation of 𝜁L using strategies 1 and 3 with 𝑇 = 20. a) 𝜁 ,
found using strategy 1, b) 𝜁L, found by remapping 𝜁 using 𝚵1↦→2, and c) the 𝑦 component
of 𝚵1 ↦→2. d) 𝜁∗, found using strategy 3, e) 𝜁L, found by remapping 𝜁∗ using 𝚵1 ↦→3, and f)

the 𝑦 component of 𝚵1↦→3. 𝑥 and 𝑦 axes correspond to 𝑥 and 𝑦 coordinates of the full
domain. The directory including the Jupyter notebook that generated this figure can be

accessed at https://cocalc.com/share/public paths/
bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-4.

where superscript w represents the wave component. However, the Lagrangian mean is599
more effective than the Eulerian mean for recovering a mean flow in the presence of large600
amplitude waves (e.g. figures 2 and 3), or when the waves are significantly Doppler shifted601
(Shakespeare et al. 2021). We should therefore define waves to be high frequency motions in602
the Lagrangian frame, and mean flows to be low frequency motions in the Lagrangian frame,603
with some appropriate cut-off frequency separating the two. By this definition, mean flows604
must not necessarily be balanced in the sense of geostrophic balance, or even slowly varying605
in the Eulerian reference frame.606

However, this definition of a wave is still not precise enough. We have the option to define607
waves in either a ‘Semi-Eulerian’ or a Lagrangian way. We may say a wave perturbation is:608

609
(i) Eulerian: an Eulerian high frequency perturbation at a fixed point.610

(ii) Semi-Eulerian: a Lagrangian high frequency perturbation at a fixed point.611
(iii) Lagrangian: a Lagrangian high frequency perturbation following a particle.612

613
The difference between these viewpoints stems from the fact that waves impact the614

flow in two ways: through changing the value of a scalar as seen by a flow-following615

https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-4
https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-4
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particle, and through displacing the mean flow. The semi-Eulerian definition of the wave-616
field encompasses these two effects, whereas the Lagrangian wave-field only represents the617
changes in value of a scalar on a particle due to the wave.618

Before posing these decompositions mathematically, we consider a simple example to619
elucidate the difference between them. Consider a 2D (𝑥, 𝑧) background flow with uniform620
velocity U = (𝑈0, 0) and buoyancy 𝐵(𝑧) that is stably stratified. Steady internal lee waves621
can propagate on this base state, giving total buoyancy 𝑏 and horizontal 𝑥-velocity 𝑢(𝑥, 𝑧) of622
the form623

𝑏(𝑥, 𝑧) = 𝐵(𝑧) + 𝑏′ (𝑥, 𝑧) , (6.2)624

𝑢(𝑥, 𝑧) = 𝑈0 + 𝑢′ (𝑥, 𝑧) . (6.3)625

Lee waves are generated by flow over topography in the ocean and atmosphere, and are626
phase-locked to topography such that they are steady in the rest frame, hence 𝑢 and 𝑏 are627
independent of time. The variables 𝑏(𝑥, 𝑧) and 𝑢(𝑥, 𝑧) are therefore unchanged by an Eulerian628
mean, and the Eulerian buoyancy and velocity wave perturbations are zero.629

The Lagrangian means of 𝑏(𝑥, 𝑧) and 𝑢(𝑥, 𝑧), when filtered with an appropriate cut-off630
frequency that is lower than the intrinsic wave frequency, are 𝐵(𝑧) and 𝑈0 respectively, thus631
the semi-Eulerian wave perturbations are 𝑏′ and 𝑢′.632

In the absence of diffusion, buoyancy is a conservative tracer satisfying633

𝐷𝑏

𝐷𝑡
=

𝜕𝑏

𝜕𝑡
+ 𝒖 · ∇𝑏 = 0 , (6.4)634

thus buoyancy is constant following a particle, and the Lagrangian buoyancy wave perturba-635
tion is zero. The wave velocity 𝑢 is not constant following a particle, therefore the Lagrangian636
velocity perturbation is non-zero (and unknown for now).637

6.1. Semi-Eulerian wave definition638

The semi-Eulerian wave-field is defined to be the instantaneous field minus the Lagrangian639
mean field at a fixed spatial location. The mean field is given by the Lagrangian weighted640

mean 𝑓
L
, which, as discussed in §2.3, contains no wave signal when weighted with the641

appropriate frequency filter. We define642

𝑓 w
S−E(𝒙, 𝑡

∗) = 𝑓 (𝒙, 𝑡∗) − 𝑓
L(𝒙, 𝑡∗) , (6.5)643

where the subscript S − E denotes a semi-Eulerian wave definition.644

6.2. Lagrangian wave definitions645

The Lagrangian wave-field is defined as the Lagrangian high frequency perturbation on a646
trajectory. We have two further options for how this is itself defined – either at the Lagrangian647
trajectory midpoint, or at the Lagrangian mean position:648

𝑓 w
L1(𝝋(𝒂, 𝑡

∗), 𝑡∗) = 𝑓 (𝝋(𝒂, 𝑡∗), 𝑡∗) − 𝑓 ∗(𝝋(𝒂, 𝑡∗), 𝑡∗) (6.6)649

= 𝑓 (𝝋(𝒂, 𝑡∗), 𝑡∗) − 𝑓
L( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗) , (6.7)650

𝑓 w
L2( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗) = 𝑓 (𝝋(𝒂, 𝑡∗), 𝑡∗) − 𝑓

L( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗) . (6.8)651

Using the map 𝚵3↦→2 defined by 𝚵3↦→2(𝝋(𝒂, 𝑡∗), 𝑡∗) = ¯̄𝝋(𝒂, 𝑡∗) (c.f. (3.3)-(3.5) ), and letting652
a dummy variable 𝒙 = 𝝋(𝒂, 𝑡∗) in (6.7) and 𝒙 = ¯̄𝝋(𝒂, 𝑡∗) in (6.8) we obtain the alternative653
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forms654

𝑓 w
L1(𝒙, 𝑡

∗) = 𝑓 (𝒙, 𝑡∗) − 𝑓 ∗(𝒙, 𝑡∗) (6.9)655

= 𝑓 (𝒙, 𝑡∗) − 𝑓
L(𝚵3↦→2(𝒙, 𝑡∗), 𝑡∗) , (6.10)656

𝑓 w
L2(𝒙, 𝑡

∗) = 𝑓 ((𝚵3↦→2)−1(𝒙, 𝑡∗), 𝑡∗) − 𝑓
L(𝒙, 𝑡∗) (6.11)657

Note that the two definitions (6.10)-(6.11) are just rearrangements of each other such that658
𝑓 w
L1(𝒙, 𝑡

∗) = 𝑓 w
L2(𝚵

3 ↦→2(𝒙, 𝑡∗), 𝑡∗).659

6.3. Comparing wave definitions660

Having defined four different wave-fields (one Eulerian (6.1), one semi-Eulerian (6.5) and661
two Lagrangian (6.10)-(6.11)), we now consider the features of each, with a focus on the662
semi-Eulerian/Lagrangian definitions, having already motivated the Lagrangian over the663
Eulerian mean. We note that the wave definitions given here do not depend on the strategy664
with which they are calculated.665

The semi-Eulerian definition (6.5) is perhaps the most straightforward to understand, since666
the wave is defined as ‘what is left when you remove the Lagrangian mean field’. When it667
is desirable to write the total field as a sum of mean and wave components at the same668
spatial location, as is done in the lee wave example (6.2)-(6.3), this is the most helpful669
decomposition. However, although the two terms on the 𝑅𝐻𝑆 of (6.5) are defined at the670
same spatial location, the instantaneous field 𝑓 is evaluated at the position 𝒙 which is not671
necessarily on the path of the particle whose mean position is 𝒙, and whose mean is evaluated672
in the second term. Hence, we are subtracting the mean of particle from the instantaneous673
value of a different particle. As in §2.3, the Lagrangian low-pass filter applied to the wave674
field would ideally return zero, and this is not the case for the semi-Eulerian wave-field when675
filtered along trajectories of either the original flow 𝝋 or the mean flow ¯̄𝝋.676

However, the Lagrangian definitions do have this property, and it can be shown that677
(assuming a simple band-pass filter as described in §2.3) the first Lagrangian wave-field678
is zero when low-pass filtered along the original flow paths, and the second is zero when679
low-pass filtered along the mean flow paths. For comparison with the well-known notation680
of Andrews & McIntyre (1978), we note that the second Lagrangian wave definition (6.11)681
corresponds to their Lagrangian disturbance quantities with a superscript 𝑙 (e.g. their equation682

2.11), although their Eulerian average (such that 𝑓 𝑙
E
= 0) is replaced in our case with a683

Lagrangian average along mean flow trajectories since we do not assume separation of684
time-scales (see Appendix B).685

In the first Lagrangian wave definition (6.10), a deformation of the mean field that includes686
the impact of the wave disturbance of the mean field ( 𝑓 ∗) is subtracted from the instantaneous687
field to give a wave component 𝑓 w

L1 that documents only the changes to the value of the field688
seen by a particle. This is the wave field that is found by filtering methods that use particle689
tracking with particles seeded at the reference time 𝑡∗, such as Shakespeare et al. (2021),690
which directly find 𝑓 ∗ as the mean field (although such methods usually track with horizontal691
velocities only, so only approximate 𝑓 ∗). We will later see that this wave decomposition can692
give a much clearer view of the wave field than the semi-Eulerian definition, since the wave693
component does not include the wave-displaced mean flow. However 𝑓 ∗(𝒙, 𝑡) is not the true694
mean field, as it includes a wave signal (see figure 6c later).695

The second Lagrangian wave definition (6.11) is similar to the first, but to find the wave field696
the instantaneous total field must first be deformed to remove the effect of wave displacement,697
before the mean field is subtracted. Therefore, neither of the Lagrangian descriptions give a698
decomposition that can be written as wave + mean = total at a fixed spatial location.699
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7. Results: Lagrangian waves700

Figure 5 shows the four different wave decompositions discussed above for the same example701
as in figure 2, where in each case the left column minus the middle column gives the wave702
perturbation in the right column. Both the Eulerian and semi-Lagrangian wave definitions703
give a wave that has a significant signature of the turbulent mean flow. In the Eulerian case,704
this is because the mean flow is blurred by the high amplitude wave perturbations, and in the705
semi-Eulerian case this is because the deformation of the mean field by the high amplitude706
wave is included in the wave definition.707

The Lagrangian wave definitions in figures 5i and 5l are much cleaner as they only represent708
the wave vorticity. However, the original mode-1 plane wave is not perfectly recovered, as709
can be seen in figures 5i and 5l. This is a result of nonlinear wave–mean interactions. There710
appear to be two such types of interaction – large scale deformations of the plane wave due711
to interaction with the mean flow (seen more clearly in figure 7 and supplementary movie712
1), and high frequency oscillations of the mean flow that appear in figures 5i and 5l at the713
same spatial scales as the mean flow. The amplitude of this turbulence-like pattern scales714
with the wave linearity, is independent of grid resolution (making it unlikely to be caused by715
interpolation errors – see §8), and is the same in both strategies 1 and 3. The time evolution716
of the mean and wave fields is shown in supplementary movie 1.717

Figure 6 shows Hovmöller diagrams of several of the fields shown in figure 5. Comparing718
the instantaneous (figure 6a) and Lagrangian mean (figure 6b) vorticity shows that the wave719
has been very effectively removed by the Lagrangian low-pass filter.720

The wave oscillations are very clear in 𝜁∗ (figure 6c) – from which 𝜁
L in figure 6b is721

remapped. Wave oscillations are also visible in the Eulerian mean 𝜁
E in figure 6d, and the722

vorticity gradients in the turbulent flow are overly smoothed, as shown in figure 2c.723

The various wave decompositions are shown in the bottom row of figure 6, again724
demonstrating that the two Lagrangian definitions give a clean representation of the wave725
field, whereas the Eulerian and semi-Eulerian wave-definitions contain significant imprints726

of the turbulent flow. A movie showing the evolution of 𝜁 , 𝜁∗, and 𝜁
L over the time series727

shown in figure 6 is provided in the supplementary material (supplementary movie 1).728

Despite the Lagrangian wave perturbations being visually ‘cleaner’ in that they recreate729
more closely the plane wave with which the simulation was initialised, the physically730
appropriate wave definition for a given problem is likely to be context-dependent.731

Finally, we present an example to demonstrate the flexibility of Lagrangian frequency732
filtering. Figure 7a shows the instantaneous vorticity of a flow that has been initialised with733
a turbulent flow and mode-1 wave in the 𝑥 direction (as before), and also a mode-2 wave in734
the 𝑦 direction. The waves have the same amplitude in vorticity, and have frequencies 4.17735
and 7.12 respectively. In figures 7c and 7f, the mean and L2 wave perturbations are shown736
for a low-pass filter at cut-off frequency 𝜔𝑐 = 2, which removes both waves from the mean737
flow. Figures 7d and 7g are as for figures 7c and 7f with cut-off frequency 𝜔𝑐 = 5.5, which738
retains the mode-1 wave in the ‘mean’ flow (figure 7d), and leaves the mode-2 wave in the739
‘wave’ perturbation (figure 7g). In figures 7e and 7h the filter defined in (2.12) is used, such740
that the Lagrangian mean operation removes frequencies between 𝜔1 = 2 and 𝜔2 = 5.5 and741
retains all other frequencies. Therefore, the mode-2 wave is kept as part of the ‘mean’, and742
the mode-1 is in the ‘wave’ perturbation. Each of the weight functions are shown in figure743
7b. As in figure 5, large scale departures of the wave perturbations in figures 7g and 7h744
from a perfect mode-2 and mode-1 plane wave respectively are again attributed to nonlinear745
interactions between the waves and between the waves and the turbulent flow.746
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Figure 5: The four different wave decompositions: (top) Eulerian, (second row)
semi-Eulerian, (third row) Lagrangian first definition, and (bottom) Lagrangian second

definition. For each row, the middle ‘mean’ field is subtracted from the left ‘instantaneous’
field to give the right ‘wave’ field. The flow parameters are as for figure 2, and strategy 3 is

used. The directory including the Jupyter notebook that generated this figure can be
accessed at https://cocalc.com/share/public paths/

bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-5.

https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-5
https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-5
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Figure 6: Hovmöller (space-time) diagrams of vorticity: a) instantaneous, b) Lagrangian
low-pass , c) Lagrangian low-pass at the trajectory midpoint, d) Eulerian low-pass, e)
Lagrangian L1 wave, f) Lagrangian L2 wave, g) semi-Eulerian wave, and h) Eulerian

wave. Strategy 3 is used to solve for the Lagrangian means at a temporal resolution of 0.2.
Parameters are identical to figure 2. All panels are shown at 𝑦 = 2.8. The directory

including the Jupyter notebook that generated this figure can be accessed at https://cocalc.
com/share/public paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-6.

8. Numerical errors and interpolation747

There are two primary error sources in our method – the truncation of the interval length and748
the interpolations, and these error sources are shared by particle tracking methods. Appendix749
F shows the impact of varying the half-interval length 𝑇 . We found that increasing 𝑇 reduced750
the remaining wave-frequency oscillations, but increasing the interval length past 𝑇 = 20751
made negligible difference to the solutions, making 𝑇 = 20 our value of choice (so that752
𝜔𝑐𝑇 = 40, and the averaging interval 2𝑇 is 12.7 times longer than the cut-off period). It753
may however be worth reducing 𝑇 and suffering a small error of this type to reduce the754
computational expense of the calculations.755

The other source of error comes from interpolation. In the methods discussed here, there756
are two types of interpolation. The first is performed at every time step of strategies 2 and 3757
in the 𝑅𝐻𝑆 of equations (3.20), (3.23), (3.27) and (3.28), and requires finding a scalar field758
(the scalar to be averaged, or each component of velocity) at some coordinate 𝚵2↦→1

𝑝 (𝑥, 𝑡)759

(strategy 2) or 𝚵3↦→1
𝑝 (𝑥, 𝑡) (strategy 3), where the scalar is known on a regular grid. The760

second is the final remapping of 𝑓 (in strategy 1) or 𝑓 ∗ (in strategy 3) to 𝑓
L
. In this case,761

𝑓
L

is known at the irregularly spaced locations 𝚵1↦→2(𝒙, 𝑡∗) or 𝚵3↦→2(𝒙, 𝑡∗), and needs to be762
found at regularly gridded locations. We do not expect this second type of interpolation to763
be problematic in strategy 3, as demonstrated in figure 4.764

When the flow is such that distances between points advected by the flow become very far765
apart or very close together over the interval of interest, as represented by an interpolating766
map with sharp gradients (e.g. 𝚵1↦→2 shown in figure 4c), both types of interpolation can be767
prone to error. This can be the case when the flow is compressible (or equivalently when768

https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-6
https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-6
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Figure 7: An example of different frequency filters with corresponding functions �̂� (𝜔)
shown in panel b. a) Instantaneous vorticity for a MSW simulation with a mode-1 wave in

𝑥 and a mode-2 wave in 𝑦 of the same vorticity amplitude (𝐴 = 0.5), with respective
frequencies 4.17 and 7.12. c) Lagrangian low-pass filter of the flow in panel a with a
cut-off frequency of 2, so that both waves are removed, d) as in panel c with a cut-off

frequency of 5.5, so that only the mode-2 wave is removed, and e) as in panel c with the
filter defined in equation (2.12) and labelled ‘band-pass’ in panel b, with 𝜔1 = 2 and
𝜔2 = 5.5, so that the mode-2 wave is retained and the mode-1 removed. f, g, and h) L2

wave perturbation corresponding to panels c, d, and e respectively. The directory
including the Jupyter notebook that generated this figure can be accessed at https://cocalc.

com/share/public paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-7.

performed on a 2D surface in a 3D incompressible flow; Shakespeare et al. 2021), but also769
when the flow is incompressible and straining or shearing.770

In the shallow water case here, the flow is both compressible and straining/shearing, and771
the mean flow evolves significantly over the time interval (e.g. figure 3b). We therefore expect772
to accumulate the first type of interpolation error at each time step, although we do not see773
evidence of this error in our experiments. The mean flow ‘imprint’ in the wave component774
in figures 5i, 5l, 6c, and 6f is independent of resolution and scales with wave nonlinearity,775
so we attribute this to physical nonlinear interactions as discussed in §7.776

https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-7
https://cocalc.com/share/public_paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/Figure-7
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Although strategies 2 and 3 accumulate interpolation error at every time step, the777
interpolation terms in the Lagrangian scalar equations (3.23) and (3.27) are weighted by778
𝐺 (𝑡∗ − 𝑡), which becomes small as the time moves away from the interval midpoint (see779
figure 2d). Therefore, the (more accurate) interpolation along trajectories over short times780
is more important, and long time interpolations become negligible. Increasing the interval781
time to reduce truncation error does not significantly increase interpolation error in strategy782
3.783

Strategy 1 does not suffer from accumulation of interpolation error as particle tracking and784
the other strategies do, needing only one interpolation, but this interpolation can be complex785
and inaccurate (as shown in figure 4), and depends strongly on the length of the averaging786
interval. Thus increasing the averaging interval worsens interpolation error in strategy 1, but787
improves truncation error.788

A choice over whether strategy 1,2 or 3 is optimal should be made based on the nature of the789
flow, time-scales, boundary conditions, computational parallelisation, and weight function790
involved.791

9. Discussion792

In this work, we have extended the PDE-based approach of KV23 for finding a top-hat793
Lagrangian mean to a Lagrangian mean with a general convolutional weight function. In794
particular, this has allowed us to present a method for Lagrangian frequency filtering, whereby795
specific intrinsic frequencies of a flow can be isolated from the rest of the flow. We have796
also derived some of the special properties of Lagrangian mean flows that hold for particular797
weight functions, and explored several different wave–mean decompositions.798

In addition to re-deriving the strategies 1 and 2 of KV23 for a general weight function, we799
have presented a novel strategy 3 that removes some of the difficulties associated with800
strategies 1 and 2, and have shown that this strategy allows a clean decomposition of801
geostrophic turbulence and large amplitude Poincaré waves in a simple rotating shallow802
water system.803

In the system presented here, Lagrangian filtering aims to recover the mean flow without804
the signature of the large amplitude wave displacements. We have demonstrated the ability805
of our method to achieve this. However, an equally important use of Lagrangian filtering is to806
allow decomposition of waves and mean flows when the waves have been Doppler shifted by807
the mean flow, that is when the flow speed is large compared to the phase speed of the waves.808
This is the use that Shakespeare et al. (2021) focus on in their presentation of Lagrangian809
filtering. Although we do not show an example of Doppler shifting of waves by the mean810
flow here, the method is straightforwardly applicable.811

Our method for Lagrangian filtering can be compared to existing particle tracking methods.812
Lagrangian filtered fields can be found by tracking particles online, although Lagrangian813
means are then defined at and remapped from the initially seeded particle positions. This814
can lead to problems with particle clustering similar to those discussed in §8. To tackle this815
problem, Shakespeare et al. (2021) recently presented an open-source implementation of816
offline Lagrangian filtering. Their method uses offline simulation data (scalars and horizontal817
velocities) to track particles backwards and forwards from the interval midpoint, finding the818
time series of a scalar on a particle, temporally filtering, and assigning the filtered scalar819
to the trajectory midpoint. This method (when carried out using 3D velocities) directly820

finds 𝑓 ∗ (in our notation), rather than the generalised Lagrangian mean 𝑓
L
, but this may be821

sufficient if the waves are low amplitude and 𝑓 ∗ ≃ 𝑓
L
, or if the L1 wave decomposition is822

needed. Alternatively, 𝑓
L

could be recovered by finding the Lagrangian mean of position and823
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performing an interpolation of 𝑓 ∗ to 𝑓
L

(similar to the final step in our strategy 3). Offline824
particle tracking requires saving, storing, and processing large quantities of simulation output,825
requiring high storage and post-processing cost. Particle tracking also suffers from expense826
and error associated with interpolation at each time step, similarly to our strategies 2 and 3.827

In contrast, our method solves the Lagrangian mean equations at the same time as the828
evolution equations of the flow itself, so saving high frequency simulation output is not829
required. This also allows the Lagrangian equations to be solved on the same grid and830
using the same numerical scheme as the original simulation. There is flexibility over the831
weight function used and the specific Lagrangian mean and wave definitions that are solved832
for. However, this does increase the computational expense of the simulation itself. In our833

2D shallow water example, using (the cheapest) strategy 1 to solve for 𝑓
L

increased the834
computation time over shallow water alone by 66%, and using strategy 3 by 132% (see835
Appendix E).836

We therefore expect the two different methods to have different uses. When filtering existing837
simulation output, or output from a large and complex general circulation model, it may be838
preferable to use particle tracking offline. However, for process studies where wave or mean839
identification is a primary objective, our method is easily implemented, more flexible, and840
requires much less storage.841

When finding the Lagrangian mean at high temporal resolution, the expense of our method842
increases greatly since a set of Lagrangian mean equations needs to be solved for each time843
𝑡∗ where the Lagrangian mean is required (e.g. as in figure 6). Particle tracking methods844
also suffer from this drawback to some extent. If a ‘slow’ Lagrangian mean is the quantity845
of interest, then a time series of Lagrangian means can be found at a coarse time resolution846
that only resolves this slow variation. The semi-Eulerian wave perturbation can then be847
found at all times by interpolating this mean to the time of interest and removing it from the848
instantaneous field. However, if one of the Lagrangian wave definitions is needed, then the849
Lagrangian mean calculation needs to be carried out at a temporal resolution that captures850
the waves.851

There is however a special class of weight functions that are exponential or sum-of-852
exponentials, in which case the partial Lagrangian mean found at each time step during853
the evolution of the Lagrangian mean equations is itself the full mean (Minz et al. 2024).854
This allows the Lagrangian mean to be found at each time step with the expense of solving855
only one set of Lagrangian mean equations. The drawback of this method is an inability856
to freely choose the weight function (for example, to filter at a specific frequency) but the857
significant improvement in computational cost may make this worthwhile. The derivation858
and an evaluation of the exponential mean is presented in Minz et al. (2024).859

We presented three separate strategies for finding the Lagrangian mean, each of which860
has its own advantages and disadvantages. Strategy 1 is cheapest and is simple to implement861
(particularly in Distributed Memory Parallelisation), but fails when the mean flow varies862
significantly over the averaging interval (e.g. figure 4b). Strategy 2 directly finds the863
Lagrangian mean, but cannot easily be used in bounded domains and is the slowest method864
(see Appendix E).865

Strategy 3 is slower than strategy 1, but faster than strategy 2. It has simple boundary866
conditions, and can be solved in a periodic or bounded domain. Like strategy 1, it requires a867
final interpolation step, but this interpolation is simpler than that in strategy 1, and likely to868
be accurate for a low-pass filter. Future work will focus on implementing the three strategies869
in a 3D Boussinesq solver and testing their ability for Lagrangian filtering of different flow870
configurations.871

Supplementary data. A supplementary movie is provided (supplementary movie 1).872
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Appendix A. The mean of a Lagrangian mean scalar884

As explained in §2.3, we would like the mean 𝑓
L(𝒙, 𝑡∗) to satisfy a property that we expect885

of a mean, namely that the mean is unchanged by reapplying the averaging operation (2.13).886
Here, we introduce some clarifying notation to define what is meant by the operation on887

the 𝐿𝐻𝑆 of (2.13), since the averaging operation itself depends on the flow with respect to888
which the Lagrangian mean is taken. We define Lagrangian averaging operators that act on889
some scalar field ℎ(𝒙, 𝑡):890

ℎ
𝝋 (𝒂, 𝑡∗) =

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠)ℎ(𝝋(𝒂, 𝑠), 𝑠) d𝑠 (A 1)891

ℎ
¯̄𝝋 (𝒂, 𝑡∗) =

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠)ℎ( ¯̄𝝋(𝒂, 𝑠), 𝑠) d𝑠 , (A 2)892

such that (·) 𝝋
denotes a Lagrangian mean at time 𝑡∗ along the flow defined by 𝝋 for a893

trajectory labelled by 𝒂, and (·)
¯̄𝝋

similar for a (mean) flow defined by ¯̄𝝋. The definition of894

the generalised Lagrangian mean 𝑓
L

of a scalar 𝑓 given in (2.9) can then be written:895

𝑓
L( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗) ≡

(
𝑓

L ◦ ¯̄𝝋
)
(𝒂, 𝑡∗) ≡ 𝑓

𝝋 (𝒂, 𝑡∗) , (A 3)896

where function composition is denoted by ‘◦’ and taken to apply to the first argument of897

a given function. Note that 𝑓
𝝋

is a function of the label space (𝒂, 𝑡∗), making it a fully898

Lagrangian variable, whereas 𝑓
L

is a function of physical space (specifically, the mean899
position).900

The Lagrangian mean of the Lagrangian mean scalar should be taken with respect to the901
mean flow, so (2.13) can now be posed more carefully as902

𝑓
L

¯̄𝝋
= 𝑓

𝝋
. (A 4)903

We find the conditions on the weight function 𝐺 for which (A 4) holds. We have904

𝑓
L

¯̄𝝋
(𝒂, 𝑡∗) =

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) 𝑓 L( ¯̄𝝋(𝒂, 𝑠), 𝑠) d𝑠 (A 5)905

=

∫ ∞

−∞

[∫ ∞

−∞
𝐺 (𝑡∗ − 𝑢)𝐺 (𝑢 − 𝑠) d𝑢

]
𝑓 (𝝋(𝒂, 𝑠), 𝑠) d𝑠 . (A 6)906
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By comparison with (2.9), we see that907

𝑓
L

¯̄𝝋
(𝒂, 𝑡∗) = 𝑓

𝝋 (𝒂, 𝑡∗) ⇔
∫ ∞

−∞
𝐺 (𝑡∗ − 𝑢)𝐺 (𝑢 − 𝑠) d𝑢 = 𝐺 (𝑡∗ − 𝑠) (A 7)908

⇔
(
�̂� (𝜔)

)2
= �̂� (𝜔) , (A 8)909

where �̂� (𝜔) is the Fourier transform of 𝐺, defined in (2.5).910
From (A 8), we see that condition (A 4) is only satisfied if �̂� (𝜔) = 0 or 1, or some911

piece-wise combination of each.912

Appendix B. Relation to classical GLM theory and time-scale separation913

The development of GLM theory by Andrews & McIntyre (1978) defines averaging proce-914
dures in an abstract way that apply similarly to spatial, temporal, or ensemble Lagrangian915
averages. However, for a time average it is assumed that there is a time-scale separation916
between the ‘slow’ and ‘fast’ motions to be separated by Lagrangian averaging (Bühler917
2014). Here, we explain this assumption and how it relates to our formulation.918

First, we define the lift map 𝚵 from the mean flow map to the flow map (this is equivalent919
to 𝚵2 ↦→3 in the notation of the current work) by920

𝚵( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗) = 𝝋(𝒂, 𝑡∗) , (B 1)921

so that a particle at position 𝚵(𝒙, 𝑡) has mean position 𝒙 at time 𝑡. In our notation (using the922
definitions (A 1)-(A 2)), we have923

𝑓 ◦ 𝚵
¯̄𝝋
= 𝑓

𝝋
. (B 2)924

Andrews & McIntyre (1978) define the Lagrangian mean (which we distinguish from our925
definition by a prime) as926

𝑓
L′
(𝒙, 𝑡∗) = 𝑓 ◦ 𝚵 E(𝒙, 𝑡∗) , (B 3)927

where (·) E
denotes the Eulerian time average defined in (2.10).928

Rewriting our definition of the Lagrangian mean for comparison with (B 3) using (A 3)929
and (B 2) gives930

𝑓
L ◦ ¯̄𝝋 = 𝑓 ◦ 𝚵

¯̄𝝋
. (B 4)931

Therefore, the definitions of 𝑓
L

and 𝑓
L′

are equivalent (and the assumption of separate slow932
and fast time-scales holds) when933

𝑓 ◦ 𝚵 E ◦ ¯̄𝝋 = 𝑓 ◦ 𝚵
¯̄𝝋
, (B 5)934

or equivalently, when the Eulerian mean (·) E
in the definition (B 3) is a good approximation935

to the more general expression (·)
¯̄𝝋 ◦ ¯̄𝝋−1 .936

To demonstrate this condition in a different way, we can write937

𝑓
L′
(𝒙, 𝑡∗) = 𝑓 ◦ 𝚵 E(𝒙, 𝑡∗) (B 6)938

=

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) 𝑓 (𝚵(𝒙, 𝑠), 𝑠) d𝑠 . (B 7)939
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Letting 𝒙 = ¯̄𝝋(𝒂, 𝑡∗) gives940

𝑓
L′
( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗) =

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) 𝑓 (𝚵( ¯̄𝝋(𝒂, 𝑡∗), 𝑠), 𝑠) d𝑠 . (B 8)941

However, by our definitions (A 1) and (A 2),942

𝑓
L( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗) =

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) 𝑓 (𝝋(𝒂, 𝑠), 𝑠), 𝑠) d𝑠 (B 9)943

=

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) 𝑓 (𝚵( ¯̄𝝋(𝒂, 𝑠), 𝑠), 𝑠) d𝑠 . (B 10)944

The two definitions 𝑓
L

and 𝑓
L′

are approximately equal provided that (comparing (B 8) and945
(B 10)) 𝑓 (𝚵( ¯̄𝝋(𝒂, 𝑡∗), 𝑠), 𝑠) ≈ 𝑓 (𝚵( ¯̄𝝋(𝒂, 𝑠), 𝑠), 𝑠) where 𝐺 (𝑡∗− 𝑠) is not small. This assumes946
that the mean flow is ‘frozen’ during the averaging operation and is the implicit assumption947
of time-scale separation behind the Andrews & McIntyre (1978) definition of the Lagrangian948
mean.949

A flow which illustrates the difference between the two formulations is the classical lee-950
wave problem discussed in §6. Consider the flow defined in (6.2) - (6.3). The flow is steady,951
so 𝚵 (as defined in (B 1)) and the scalar 𝑓 to be averaged are independent of time. Then we952
have953

𝑓
L′
(𝒙) =

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) 𝑓 (𝚵(𝒙)) d𝑠 (B 11)954

= 𝑓 (𝚵(𝒙)) , (B 12)955

whereas956

𝑓
L( ¯̄𝝋(𝒂, 𝑡∗)) =

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) 𝑓 (𝝋(𝒂, 𝑠)) d𝑠 . (B 13)957

Suppose the scalar 𝑓 is the vertical velocity 𝑤. The first definition ((B 11) - (B 12)) is simply958
a rearrangement of the scalar field and no averaging is performed, so the Lagrangian mean959
will be non-zero. However, the second definition (as used in this paper) will average over960
the oscillations of 𝑤 on a particle and give zero Lagrangian mean (when 𝐺 is defined to961
remove wave frequencies) as is expected. The difference between the two definitions results962
from relaxation of the assumption in the second that the mean flow is ‘frozen’ during the963
averaging interval.964

Appendix C. The Lagrangian material derivative965

We show that, for convolutional weight functions 𝐺 (𝑡∗ − 𝑠), there is a powerful relation966
between the material derivative of a Lagrangian mean quantity and the Lagrangian mean of967
a material derivative, namely (c.f. (2.16)–(2.17), repeated here)968

¯̄𝐷 𝑓
L
= 𝐷 𝑓

L
, (C 1)969

where970

𝐷 ≡ 𝜕

𝜕𝑡
+ 𝒖 · ∇ , (C 2)971

¯̄𝐷 ≡ 𝜕

𝜕𝑡∗
+ ¯̄𝒖 · ∇ . (C 3)972
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We have973 (
¯̄𝐷 𝑓

L) ◦ ¯̄𝝋(𝒂, 𝑡∗) =
(
𝜕 𝑓

L

𝜕𝑡∗
+ ¯̄𝒖 · ∇ 𝑓

L
)
◦ ¯̄𝝋(𝒂, 𝑡∗) (C 4)974

=
d

d𝑡∗
(
𝑓

L( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗)
)

(C 5)975

=
d

d𝑡∗

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) 𝑓 (𝝋(𝒂, 𝑠), 𝑠) d𝑠 (C 6)976

=

∫ ∞

−∞
𝐺′ (𝑡∗ − 𝑠) 𝑓 (𝝋(𝒂, 𝑠), 𝑠) d𝑠 (C 7)977

=

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠) d

d𝑠
( 𝑓 (𝝋(𝒂, 𝑠), 𝑠)) d𝑠 (C 8)978

=

∫ ∞

−∞
𝐺 (𝑡∗ − 𝑠)

(
𝜕 𝑓

𝜕𝑠
(𝝋(𝒂, 𝑠), 𝑠) + 𝜕𝝋

𝜕𝑠
(𝒂, 𝑠) · ∇ 𝑓 (𝝋(𝒂, 𝑠), 𝑠)

)
d𝑠

(C 9)

979

=

(
𝐷 𝑓

L) ◦ ¯̄𝝋(𝒂, 𝑡∗) , (C 10)980

where from (C 4)-(C 5) we used the definition (2.15) of Lagrangian mean velocity, and from981
(C 7)-(C 8) we relied on the convolutional form of the weight function and used integration982
by parts, assuming from (2.11) that 𝐺 (𝑡∗− 𝑠) → 0 as 𝑠 → ±∞. Equivalently, it can be shown983
that (C 1) only holds when the weight function takes the specific (convolutional) form of a984
frequency filter.985

Appendix D. Derivation of strategy 3986

Here we derive strategy 3, which solves directly for 𝑓 ∗(𝝋(𝒂, 𝑡∗), 𝑡∗). For this we need to solve987

for the map 𝚵3↦→1, and also find a map 𝚵3↦→2 to enable us to find 𝑓
L( ¯̄𝝋(𝒂, 𝑡∗), 𝑡∗).988

We first consider the case 𝑡 < 𝑡∗. This case is equivalent to strategy 1, since we solve at989
𝝋∗
𝑝 (𝒂, 𝑡) = 𝝋(𝒂, 𝑡). Differentiating (3.7), or by comparison with (3.12) in strategy 1, we can990

write an equation for the partial mean 𝑓 ∗𝑝:991

𝜕 𝑓 ∗𝑝
𝜕𝑡

(𝒙, 𝑡) + 𝒖(𝒙, 𝑡) · ∇ 𝑓 ∗𝑝 (𝒙, 𝑡) = 𝑓 (𝒙, 𝑡)𝐺 (𝑡∗ − 𝑡) . (D 1)992

We note that for 𝑡 < 𝑡∗, 𝚵3↦→1
𝑝 (𝒙, 𝑡) = 𝒙 is the identity map, so, defining993

𝝃3↦→1
𝑝 (𝒙, 𝑡) = 𝚵3↦→1

𝑝 (𝒙, 𝑡) − 𝒙 , (D 2)994

we have995

𝝃3↦→1
𝑝 (𝒙, 𝑡) = 0 , 𝑡 < 𝑡∗ . (D 3)996

We also solve for 𝚵3↦→2(𝒙, 𝑡∗) to enable us to find 𝑓
L(𝒙, 𝑡∗). To do this, we differentiate the997

definition of 𝚵3↦→2
𝑝 in (3.11). For 𝑡 < 𝑡∗, this is equivalent to solving for 𝚵1↦→2

𝑝 in strategy 1,998
so we define (c.f. (3.14))999

𝝃3↦→2
𝑝 (𝒙, 𝑡) = 𝚵3↦→2

𝑝 (𝒙, 𝑡) − 𝒙 , (D 4)1000

then from (3.13),1001

𝜕𝝃3↦→2
𝑝

𝜕𝑡
(𝒙, 𝑡) + 𝒖(𝒙, 𝑡) · ∇𝝃3↦→2

𝑝 (𝒙, 𝑡) = −𝒖(𝒙, 𝑡)
∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) d𝑠 . (D 5)1002
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We now consider the case 𝑡 > 𝑡∗. Differentiating (3.7) with respect to 𝑡, we find1003

𝜕 𝑓 ∗𝑝
𝜕𝑡

(𝒙, 𝑡) = 𝐺 (𝑡∗ − 𝑡) 𝑓 (𝒙 + 𝝃3↦→1
𝑝 (𝒙, 𝑡)) . (D 6)1004

We now find an equation for 𝝃3 ↦→1
𝑝 (𝒙, 𝑡). Differentiating the definition of 𝚵3↦→1

𝑝 in (3.10) gives1005

𝜕𝚵3↦→1
𝑝

𝜕𝑡
= 𝒖(𝚵3 ↦→1

𝑝 (𝒙, 𝑡), 𝑡) (D 7)1006

⇔
𝜕𝝃3↦→1

𝑝

𝜕𝑡
= 𝒖(𝒙 + 𝝃3↦→1

𝑝 (𝒙, 𝑡), 𝑡) . (D 8)1007

Finally, we find an equation for 𝝃3↦→2
𝑝 (𝒙, 𝑡). Differentiating the definition of 𝚵3↦→2

𝑝 in (3.11)1008
gives1009

𝜕𝚵3↦→2
𝑝

𝜕𝑡
(𝝋∗

𝑝 (𝒂, 𝑡), 𝑡) = 𝒖(𝝋(𝒂, 𝑡), 𝑡)
(
1 −

∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) d𝑠

)
(D 9)1010

⇔
𝜕𝝃3↦→2

𝑝

𝜕𝑡
(𝒙, 𝑡) = 𝒖(𝒙 + 𝝃3 ↦→1

𝑝 (𝒙, 𝑡), 𝑡)
(
1 −

∫ 𝑡

𝑡∗−𝑇
𝐺 (𝑡∗ − 𝑠) d𝑠

)
. (D 10)1011

The final equations are summarised as (3.27)–(3.29) in the main text.1012

Appendix E. Run time of each strategy1013

Table 2 shows the run time of strategies 1,2, and 3 when solving for different combinations1014
of the Lagrangian fields that may be required. Simulations are run at 256 × 256 horizontal1015
resolution over 20 time units (𝑇 = 10) with a time step of 0.005 (4000 time steps), and1016
an average time taken over three runs. The time reported is for the simulation only – the1017
final remapping in each case takes the same time as < 100 time steps. Vorticity is the only1018
Lagrangian mean scalar being solved for.1019

The variation in run times between each column of table 2 for each strategy is due to the1020
number of equations being solved and the complexity of these equations. The combinations1021
of PDEs needed for each strategy are shown in table 1.1022

For each combination of Lagrangian fields to be solved, strategy 1 is the fastest because1023
there is no interpolation on the 𝑅𝐻𝑆 of the Lagrangian mean equations (3.12),(3.13), and1024
(3.16). However, this can come at the expense of accuracy due to the final interpolation1025

needed to recover 𝑓
L

(see figure 4).1026
The most expensive operations in this pseudo-spectral solver are finding interpolations and1027

calculating nonlinear terms. Strategy 3 is faster than strategy 2 because strategy 2 requires1028
finding both a nonlinear advection term and an interpolated term at every time step in1029
equations (3.20), (3.23), and (3.24), whereas strategy 3 (equations (3.27), (3.28), and (3.29))1030
requires either computing nonlinear terms or computing interpolations at each time step, not1031
both (since 𝒙 + 𝝃3↦→1

𝑝 (𝒙, 𝑡) = 𝒙 for 𝑡 < 𝑡∗ from (D 3)).1032

Appendix F. Comparison of filter interval times1033

Throughout this study, we used an averaging interval time of 2𝑇 = 40. Longer averaging times1034
improve the wave decomposition, since there is less truncation error when approximating the1035
full Lagrangian mean (2.9) by the integral over the finite interval (3.2). The condition for the1036
truncation to approximate the full interval is 𝜔𝑐𝑇 ≫ 1, where 𝜔𝑐 = 2 here.1037
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Strategy Solve for 𝑓
L Solve for 𝑓 ∗ Solve for 𝑓 ∗ and 𝑓

L

Strategy 1 1 1.01 1.19
Strategy 2 2.13 2.31 2.31
Strategy 3 1.39 1.30 1.39

Table 2: Run times for the shallow water simulation and Lagrangian mean computation
for each strategy, using the code given in Baker et al. (2024). Times are normalised by the
time taken for strategy 1 when solving for 𝑓

L only. For comparison, when the simulation
is run without the Lagrangian mean equations (shallow water only), the corresponding

normalised time is 0.6.

Figure 8: Hovmöller diagrams of vorticity for a range of averaging interval times. a)
instantaneous 𝜁 , (top row) Lagrangian mean 𝜁

L, and (bottom row) L2 wave 𝜁w
L2. The

directory including the Jupyter notebook that generated this figure can be accessed at
https://cocalc.com/share/public paths/bdc0d1617e113644a25e3ba4c0b91b8fad20701f/

Figure-8.

Figure 8 shows the impact of increasing the interval time 2𝑇on the time series of Lagrangian1038
mean and L2 wave perturbation. As 𝑇 increases, the quality of the filter improves and1039
progressively more wave signal is removed from the Lagrangian mean. The error decreases1040
until 2𝑇 = 40. Filters that are more localised in time (such as a Butterworth or Gaussian1041
filter) would also allow earlier truncation and a shorter averaging interval.1042
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